
Statistics

Summary: Data visualization

ggplot() specifies what data to use and what variables will be mapped to
where

inside ggplot(), aes(x = , y = , color =) specify what variables
correspond to what aspects of the plot in general

layers of plots can be combined using the + at the end of lines

use geom_line() and geom_point() to add lines and points

sometimes you need to add a group element to aes() if your plot looks
strange

make sure you are plotting what you think you are by checking the numbers!

facet_grid(~variable) and facet_wrap(~variable) can be helpful to
quickly split up your plot

·

·

·

·

·

·

·

2/65

Summary: Factors

the factor class allows us to have a different order from alphanumeric for
categorical data

we can change data to be a factor variable using mutate(), as_factor() (in
the forcats package), or factor() functions and specifying the levels with
the levels argument

fct_reorder({variable_to_reorder}, {variable_to_order_by}) helps
us reorder a variable by the values of another variable

arranging, tabulating, and plotting the data will reflect the new order

·

·

·

·

3/65

Overview

We will cover how to use R to compute some of basic statistics and fit some basic
statistical models.

Correlation

T-test

Linear Regression / Logistic Regression

·

·

·

4/65

5/65

Overview

� We will focus on how to use R software to do these. We will be glossing over
the statistical theory and “formulas” for these tests. Moreover, we do not claim
the data we use for demonstration meet assumptions of the methods. �

There are plenty of resources online for learning more about these methods, as
well as dedicated Biostatistics series (at different advancement levels) at the JHU
School of Public Health.

Check out www.opencasestudies.org for deeper dives on some of the concepts
covered here and the resource page for more resources.

6/65

https://www.opencasestudies.org/
https://jhudatascience.org/intro_to_r/resources.html

Correlation

Correlation

The correlation coefficient is a summary statistic that measures the strength of a
linear relationship between two numeric variables.

High Low HighLowPerfect Perfect

1 0.9 0.5 0 -0.5 -0.9 -1

Positive Positive NegativeNegativeNoPositive Negative
Correlation Correlation CorrelationCorrelationCorrelationCorrelation Correlation

source

See this case study for more information.

The strength of the relationship - based on how well the points form a line

The direction of the relationship - based on if the points progress upward or
downward

·

·

8/65

https://www.mathsisfun.com/data/correlation.html
https://www.opencasestudies.org/ocs-bp-co2-emissions/#Data_Analysis

Correlation

Function cor() computes correlation in R.

cor(x, y = NULL, use = c("everything", "complete.obs"),
 method = c("pearson", "kendall", "spearman"))

provide two numeric vectors of the same length (arguments x, y), or

provide a data.frame / tibble with numeric columns only

by default, Pearson correlation coefficient is computed

·

·

·

9/65

Correlation test

Function cor.test() also computes correlation and tests for association.

cor.test(x, y = NULL, alternative = c("two.sided", "less", "greater"),
 method = c("pearson", "kendall", "spearman"), ...)

provide two numeric vectors of the same length (arguments x, y), or

provide a data.frame / tibble with numeric columns only

by default, Pearson correlation coefficient is computed

alternative values:

·

·

·

·

two.sided means true correlation coefficient is not equal to zero (default)

greater means true correlation coefficient is > 0 (positive relationship)

less means true correlation coefficient is < 0 (negative relationship)

-

-

-

10/65

GUT CHECK!

What class of data do you need to calculate a correlation?

A. Character data

B. Factor data

C. Numeric data

11/65

Correlation

Using the Charm City Circulator data.

circ <- read_csv("https://jhudatascience.org/intro_to_r/data/Charm_City_Circulator_Ridership.csv")

head(circ)

A tibble: 6 × 15

 day date orangeBoardings orangeAlightings orangeAverage purpleBoardings

 <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 Monday 01/1… 877 1027 952 NA

2 Tuesday 01/1… 777 815 796 NA

3 Wednesday 01/1… 1203 1220 1212. NA

4 Thursday 01/1… 1194 1233 1214. NA

5 Friday 01/1… 1645 1643 1644 NA

6 Saturday 01/1… 1457 1524 1490. NA

� 9 more variables: purpleAlightings <dbl>, purpleAverage <dbl>,

greenBoardings <dbl>, greenAlightings <dbl>, greenAverage <dbl>,

bannerBoardings <dbl>, bannerAlightings <dbl>, bannerAverage <dbl>,

daily <dbl>

12/65

Correlation for two vectors
First, we compute correlation by providing two numeric vectors.

Like other functions, if there are NAs, you get NA as the result. But if you specify to use only the complete
observations, then it will give you correlation using the non-missing data.

x and y must be numeric vectors
x <- circ %>% pull(orangeAverage)
y <- circ %>% pull(purpleAverage)

have to specify which data on each axis
can accomodate missing data
plot(x, y)

13/65

Correlation coefficient calculation and test

library(broom)
cor(x, y)

[1] NA

cor(x, y, use = "complete.obs")

[1] 0.9195356

cor.test(x, y)

 Pearson's product-moment correlation

data: x and y
t = 73.656, df = 991, p-value < 0.00000000000000022
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.9093438 0.9286245
sample estimates:
 cor
0.9195356

14/65

Broom package

The broom package helps make stats results look tidy

cor_result <- tidy(cor.test(x, y))
glimpse(cor_result)

Rows: 1
Columns: 8
$ estimate <dbl> 0.9195356
$ statistic <dbl> 73.65553
$ p.value <dbl> 0
$ parameter <int> 991
$ conf.low <dbl> 0.9093438
$ conf.high <dbl> 0.9286245
$ method <chr> "Pearson's product-moment correlation"
$ alternative <chr> "two.sided"

15/65

Correlation for two vectors with plot
In plot form, geom_smooth() and annotate() can help.

corr_value <- pull(cor_result, estimate) %>% round(digits = 4)
cor_label <- paste0("R = ", corr_value)
circ %>%
 ggplot(aes(x = orangeAverage, y = purpleAverage)) +
 geom_point(size = 0.3) +
 geom_smooth() +
 annotate("text", x = 2000, y = 7500, label = cor_label)

16/65

Correlation for data frame columns

We can compute correlation for all pairs of columns of a data frame / matrix.
This is often called, “computing a correlation matrix”.

Columns must be all numeric!

circ_subset_Average <- circ %>% select(ends_with("Average"))
head(circ_subset_Average)

A tibble: 6 × 4
 orangeAverage purpleAverage greenAverage bannerAverage
 <dbl> <dbl> <dbl> <dbl>
1 952 NA NA NA
2 796 NA NA NA
3 1212. NA NA NA
4 1214. NA NA NA
5 1644 NA NA NA
6 1490. NA NA NA

17/65

Correlation for data frame columns

We can compute correlation for all pairs of columns of a data frame / matrix.
This is often called, “computing a correlation matrix”.

cor_mat <- cor(circ_subset_Average, use = "complete.obs")
cor_mat

 orangeAverage purpleAverage greenAverage bannerAverage
orangeAverage 1.0000000 0.9078826 0.8395806 0.5447031
purpleAverage 0.9078826 1.0000000 0.8665630 0.5213462
greenAverage 0.8395806 0.8665630 1.0000000 0.4533421
bannerAverage 0.5447031 0.5213462 0.4533421 1.0000000

18/65

Correlation for data frame columns with plot

corrplot package can make correlation matrix plots

library(corrplot)
corrplot(cor_mat)

19/65

Correlation does not imply causation

source

20/65

http://doi.org/10.1007/s10393-020-01472-1

T-test

T-test

The commonly used are:

The t.test() function in R is one to address the above.

one-sample t-test – used to test mean of a variable in one group

two-sample t-test – used to test difference in means of a variable between
two groups (if the “two groups” are data of the same individuals collected at 2
time points, we say it is two-sample paired t-test)

·

·

t.test(x, y = NULL,
 alternative = c("two.sided", "less", "greater"),
 mu = 0, paired = FALSE, var.equal = FALSE,
 conf.level = 0.95, ...)

22/65

Running one-sample t-test
It tests the mean of a variable in one group. By default (i.e., without us explicitly specifying values of other
arguments):

tests whether a mean of a variable is equal to 0 (mu = 0)

uses “two sided” alternative (alternative = "two.sided")

returns result assuming confidence level 0.95 (conf.level = 0.95)

omits NA values in data

·

·

·

·

sum(is.na(x)) # count NAs in x

[1] 10

t.test(x)

 One Sample t-test

data: x
t = 83.279, df = 1135, p-value < 0.00000000000000022
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 2961.700 3104.622
sample estimates:
mean of x
 3033.161

23/65

Running two-sample t-test
It tests the difference in means of a variable between two groups. By default:

Check out this this case study and this case study for more information.

tests whether difference in means of a variable is equal to 0 (mu = 0)

uses “two sided” alternative (alternative = "two.sided")

returns result assuming confidence level 0.95 (conf.level = 0.95)

assumes data are not paired (paired = FALSE)

assumes true variance in the two groups is not equal (var.equal = FALSE)

omits NA values in data

·

·

·

·

·

·

24/65

https://www.opencasestudies.org/ocs-bp-rural-and-urban-obesity/#Data_Analysis
https://www.opencasestudies.org/ocs-bp-diet/#Data_Analysis

Running two-sample t-test in R

sum(is.na(x))

[1] 10

sum(is.na(y)) # count NAs in x and y

[1] 153

t.test(x, y)

 Welch Two Sample t-test

data: x and y
t = -17.076, df = 1984, p-value < 0.00000000000000022
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1096.7602 -870.7867
sample estimates:
mean of x mean of y
 3033.161 4016.935

25/65

T-test: retrieving information from the result with broom package

The broom package has a tidy() function that can organize results into a data
frame so that they are easily manipulated (or nicely printed).

result <- t.test(x, y)
result_tidy <- tidy(result)
glimpse(result_tidy)

Rows: 1
Columns: 10
$ estimate <dbl> -983.7735
$ estimate1 <dbl> 3033.161
$ estimate2 <dbl> 4016.935
$ statistic <dbl> -17.07579
$ p.value <dbl> 0.00…
$ parameter <dbl> 1983.954
$ conf.low <dbl> -1096.76
$ conf.high <dbl> -870.7867
$ method <chr> "Welch Two Sample t-test"
$ alternative <chr> "two.sided"

26/65

P-value adjustment
� You run an increased risk of Type I errors (a “false positive”) when multiple hypotheses are tested
simultaneously. �

Use the p.adjust() function on a vector of p-values. Use method = to specify the adjustment method:

See here for more about multiple testing correction. Bonferroni also often done as p-value threshold
divided by number of tests (0.05/test number).

my_pvalues <- c(0.049, 0.001, 0.31, 0.00001)
p.adjust(my_pvalues, method = "BH") # Benjamini Hochberg

[1] 0.06533333 0.00200000 0.31000000 0.00004000

p.adjust(my_pvalues, method = "bonferroni") # multiply by number of tests

[1] 0.19600 0.00400 1.00000 0.00004

my_pvalues * 4

[1] 0.19600 0.00400 1.24000 0.00004

27/65

https://www.nature.com/articles/nbt1209-1135

Some other statistical tests

wilcox.test() – Wilcoxon signed rank test, Wilcoxon rank sum test

shapiro.test() – Shapiro-Wilk test of normality

ks.test() – Kolmogorov-Smirnov test

var.test()– Fisher’s F-Test

chisq.test() – Chi-squared test

aov() – Analysis of Variance (ANOVA)

·

·

·

·

·

·

28/65

Summary

use cor() to calculate correlation between two vectors, cor.test() can give
more information

corrplot() is nice for a quick visualization!

t.test() one sample test to test the difference in mean of a single vector
from zero (one input)

t.test() two sample test to test the difference in means between two
vectors (two inputs)

tidy() in the broom package is useful for organizing and saving statistical test
output

remember to adjust p-values with p.adjust() when doing multiple tests on
data

·

·

·

·

·

·

29/65

Lab Part 1

� Class Website

� Lab

30/65

https://jhudatascience.org/intro_to_r/
https://jhudatascience.org/intro_to_r/modules/Statistics/lab/Statistics_Lab.Rmd

Regression

Linear regression

Linear regression is a method to model the relationship between a response and
one or more explanatory variables.

Most commonly used statistical tests are actually specialized regressions,
including the two sample t-test, see here for more.

32/65

https://www.opencasestudies.org/ocs-bp-diet/#(t)-test_and_linear_regression

Linear regression notation

Here is some of the notation, so it is easier to understand the commands/results.

where:

= α + β +yi xi εi

 is the outcome for person i

 is the intercept

 is the slope (also called a coefficient) - the mean change in y that we would
expect for one unit change in x (“rise over run”)

 is the predictor for person i

 is the residual variation for person i

· yi

· α

· β

· xi

· εi

33/65

Linear regression

34/65

Linear regression
Linear regression is a method to model the relationship between a response and one or more
explanatory variables.

We provide a little notation here so some of the commands are easier to put in the proper context.

where:

See this case study for more details.

= α + + + +yi β1xi1 β2xi2 β3xi3 εi

 is the outcome for person i

 is the intercept

, , are the slopes/coefficients for variables , , - average difference in y for a unit
change (or each value) in x while accounting for other variables

, , are the predictors for person i

 is the residual variation for person i

· yi

· α

· β1 β2 β2 xi1 xi2 xi3

· xi1 xi2 xi3

· εi

35/65

https://www.opencasestudies.org/ocs-bp-diet/#Data_Analysis

Linear regression fit in R

To fit regression models in R, we use the function glm() (Generalized Linear
Model).

You may also see lm() which is a more limited function that only allows for
normally/Gaussian distributed error terms (aka typical linear regressions).

We typically provide two arguments:

formula – model formula written using names of columns in our data

data – our data frame

·

·

36/65

Linear regression fit in R: model formula

Model formula

In R translates to

y ~ x

= α + β +yi xi εi

37/65

Linear regression fit in R: model formula

Model formula

In R translates to

y ~ x

In practice, y and x are replaced with the names of columns from our data set.

For example, if we want to fit a regression model where outcome is income and
predictor is years_of_education, our formula would be:

income ~ years_of_education

= α + β +yi xi εi

38/65

Linear regression fit in R: model formula

Model formula

In R translates to

y ~ x1 + x2 + x3

In practice, y and x1, x2, x3 are replaced with the names of columns from our
data set.

For example, if we want to fit a regression model where outcome is income and
predictors are years_of_education, age, and location then our formula
would be:

income ~ years_of_education + age + location

= α + + + +yi β1xi1 β2xi2 β3xi3 εi

39/65

Linear regression

We will use data about emergency room doctor complaints.

“Data was recorded on 44 doctors working in an emergency service at a hospital
to study the factors affecting the number of complaints received.”

install.packages("faraway")
library(faraway)
data(esdcomp)
esdcomp

 visits complaints residency gender revenue hours
1 2014 2 Y F 263.03 1287.25
2 3091 3 N M 334.94 1588.00
3 879 1 Y M 206.42 705.25
4 1780 1 N M 226.32 1005.50
5 3646 11 N M 288.91 1667.25
6 2690 1 N M 275.94 1517.75
7 1864 2 Y M 295.71 967.00
8 2782 6 N M 224.91 1609.25
9 3071 9 N F 249.32 1747.75
10 1502 3 Y M 269.00 906.25
11 2438 2 N F 225.61 1787.75
12 2278 2 N M 212.43 1480.50
13 2458 5 N M 211.05 1733.50
14 2269 2 N F 213.23 1847.25
15 2431 7 N M 257.30 1433.00
16 3010 2 Y M 326.49 1520.00
17 2234 5 Y M 290.53 1404.75
18 2906 4 N M 268.73 1608.50

40/65

Linear regression: model fitting

We fit linear regression model with the number of patient visits (visits) as an
outcome and total number of hours worked (hours) as a predictor. In other
words, we are evaluation if the number of hours worked is predictive of the
number of visits a doctor had.

fit <- glm(visits ~ hours, data = esdcomp)
fit

Call: glm(formula = visits ~ hours, data = esdcomp)

Coefficients:
(Intercept) hours
 140.288 1.584

Degrees of Freedom: 43 Total (i.e. Null); 42 Residual
Null Deviance: 16920000
Residual Deviance: 5383000 AIC: 646.3

41/65

Linear regression: model summary

The summary() function returns a list that shows us some more detail.

summary(fit)

Call:
glm(formula = visits ~ hours, data = esdcomp)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 140.288 242.723 0.578 0.566
hours 1.584 0.167 9.488 0.00000000000526 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 128155.3)

 Null deviance: 16919101 on 43 degrees of freedom
Residual deviance: 5382524 on 42 degrees of freedom
AIC: 646.3

Number of Fisher Scoring iterations: 2

42/65

tidy results

The broom package can help us here too!

The estimate is the coefficient or slope – for one change in hours worked (1 hour
increase), we see 1.58 more visits. The error for this estimate is relatively small at
0.167. This relationship appears to be significant with a small p-value <0.001.

tidy(fit) %>% glimpse()

Rows: 2
Columns: 5
$ term <chr> "(Intercept)", "hours"
$ estimate <dbl> 140.28841, 1.58408
$ std.error <dbl> 242.7225866, 0.1669579
$ statistic <dbl> 0.5779784, 9.4879004
$ p.value <dbl> 0.566364879085634154, 0.000000000005262224

43/65

Linear regression: multiple predictors
Let’s try adding another explanatory variable to our model, dollars per hour earned by the doctor
(revenue). The meaning of coefficients is more complicated here.

fit2 <- glm(visits ~ hours + revenue, data = esdcomp)
summary(fit2)

Call:
glm(formula = visits ~ hours + revenue, data = esdcomp)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2078.1369 327.9157 -6.337 0.00000014326 ***
hours 1.6179 0.1081 14.968 < 0.0000000000000002 ***
revenue 8.3437 1.0828 7.706 0.00000000169 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 53620.97)

 Null deviance: 16919101 on 43 degrees of freedom
Residual deviance: 2198460 on 41 degrees of freedom
AIC: 608.91

Number of Fisher Scoring iterations: 2

44/65

Linear regression: multiple predictors

Can also use tidy and glimpse to see the output nicely.

fit2 %>%
 tidy() %>%
 glimpse()

Rows: 3
Columns: 5
$ term <chr> "(Intercept)", "hours", "revenue"
$ estimate <dbl> -2078.136879, 1.617854, 8.343689
$ std.error <dbl> 327.9156731, 0.1080845, 1.0827657
$ statistic <dbl> -6.337412, 14.968422, 7.705904
$ p.value <dbl> 0.00000014326245193176067, 0.00000000000000000324554, 0.0000…

45/65

Linear regression: factors

Factors get special treatment in regression models – lowest level of the factor is
the comparison group, and all other factors are relative to its values.

residency takes values Y or N to indicate whether the doctor is a resident.

esdcomp %>% count(residency)

 residency n
1 N 24
2 Y 20

46/65

Linear regression: factors
Yes relative to No – baseline is No

fit_3 <- glm(visits ~ residency, data = esdcomp)
summary(fit_3)

Call:
glm(formula = visits ~ residency, data = esdcomp)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2510.8 126.3 19.87 <0.0000000000000002 ***
residencyY -275.5 187.4 -1.47 0.149

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 383122.6)

 Null deviance: 16919101 on 43 degrees of freedom
Residual deviance: 16091148 on 42 degrees of freedom
AIC: 694.49

Number of Fisher Scoring iterations: 2

47/65

Linear regression: factors
Comparison group is not listed – treated as intercept. All other estimates are relative to the intercept.

circ <- read_csv("https://jhudatascience.org/intro_to_r/data/Charm_City_Circulator_Ridership.csv")
fit_4 <- glm(orangeBoardings ~ factor(day), data = circ)
summary(fit_4)

Call:
glm(formula = orangeBoardings ~ factor(day), data = circ)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3744.04 89.09 42.027 < 0.0000000000000002 ***
factor(day)Monday -667.67 125.99 -5.300 0.00000014090070 ***
factor(day)Saturday -883.37 126.60 -6.978 0.00000000000525 ***
factor(day)Sunday -1865.57 127.02 -14.687 < 0.0000000000000002 ***
factor(day)Thursday -528.83 126.39 -4.184 0.00003099042385 ***
factor(day)Tuesday -591.25 126.19 -4.685 0.00000315254564 ***
factor(day)Wednesday -487.93 126.39 -3.860 0.00012 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1238057)

 Null deviance: 1627179072 on 1078 degrees of freedom
Residual deviance: 1327197363 on 1072 degrees of freedom
 (67 observations deleted due to missingness)
AIC: 18208

Number of Fisher Scoring iterations: 2

48/65

Linear regression: factors
Relative to the level is not listed.

circ <- circ %>% mutate(day = factor(day,
 levels =
 c(
 "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday", "Sunday"
)
))
fit_5 <- glm(orangeBoardings ~ day, data = circ)
summary(fit_5)

Call:
glm(formula = orangeBoardings ~ day, data = circ)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3076.37 89.09 34.533 < 0.0000000000000002 ***
dayTuesday 76.42 126.19 0.606 0.5449
dayWednesday 179.73 126.39 1.422 0.1553
dayThursday 138.84 126.39 1.098 0.2723
dayFriday 667.67 125.99 5.300 0.000000141 ***
daySaturday -215.71 126.60 -1.704 0.0887 .
daySunday -1197.91 127.02 -9.431 < 0.0000000000000002 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1238057)

 Null deviance: 1627179072 on 1078 degrees of freedom
Residual deviance: 1327197363 on 1072 degrees of freedom
 (67 observations deleted due to missingness)
AIC: 18208

Number of Fisher Scoring iterations: 2 49/65

Linear regression: factors
You can view estimates for the comparison group by removing the intercept in the GLM formula

y ~ x - 1

Caveat is that the p-values change, and interpretation is often confusing.

fit_6 <- glm(orangeBoardings ~ factor(day) - 1, data = circ)
summary(fit_6)

Call:
glm(formula = orangeBoardings ~ factor(day) - 1, data = circ)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
factor(day)Monday 3076.37 89.09 34.53 <0.0000000000000002 ***
factor(day)Tuesday 3152.79 89.37 35.28 <0.0000000000000002 ***
factor(day)Wednesday 3256.10 89.66 36.31 <0.0000000000000002 ***
factor(day)Thursday 3215.21 89.66 35.86 <0.0000000000000002 ***
factor(day)Friday 3744.04 89.09 42.03 <0.0000000000000002 ***
factor(day)Saturday 2860.67 89.95 31.80 <0.0000000000000002 ***
factor(day)Sunday 1878.46 90.55 20.75 <0.0000000000000002 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1238057)

 Null deviance: 11540692004 on 1079 degrees of freedom
Residual deviance: 1327197363 on 1072 degrees of freedom
 (67 observations deleted due to missingness)
AIC: 18208

Number of Fisher Scoring iterations: 2

50/65

Linear regression: interactions
You can also specify interactions between variables in a formula y ~ x1 + x2 + x1 * x2. This allows for
not only the intercepts between factors to differ, but also the slopes with regard to the interacting
variable.

fit_7 <- glm(visits ~ hours + residency + hours * residency, data = esdcomp)
tidy(fit_7)

A tibble: 4 × 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 469. 481. 0.976 0.335
2 hours 1.32 0.308 4.30 0.000108
3 residencyY -642. 559. -1.15 0.258
4 hours:residencyY 0.574 0.377 1.52 0.136

51/65

Linear regression: interactions
By default, ggplot with a factor added as a color will look include the interaction term. Notice the
different intercept and slope of the lines.

ggplot(esdcomp, aes(x = hours, y = visits, color = residency)) +
 geom_point(size = 1, alpha = 0.8) +
 geom_smooth(method = "glm", se = FALSE) +
 scale_color_manual(values = c("black", "grey50")) +
 theme_classic()

52/65

Generalized linear models (GLMs)

Generalized linear models (GLMs) allow for fitting regressions for non-
continuous/normal outcomes. Examples include: logistic regression, Poisson
regression.

Add the family argument – a description of the error distribution and link
function to be used in the model. These include:

Very important to use the right test!

See this case study for more information.

See ?family documentation for details of family functions.

binomial(link = "logit") - outcome is binary

poisson(link = "log") - outcome is count or rate

others

·

·

·

53/65

https://www.opencasestudies.org/ocs-bp-vaping-case-study/#Data_Analysis

Logistic regression
We will use data about breast cancer tumors.

“Data come from a study of breast cancer in Wisconsin. There are 681 cases of potentially cancerous
tumors of which 238 are actually malignant. Determining whether a tumor is really malignant is
traditionally determined by an invasive surgical procedure. The purpose of this study was to determine
whether a new procedure called fine needle aspiration which draws only a small sample of tissue could
be effective in determining tumor status.”

data(wbca)
head(wbca)

 Class Adhes BNucl Chrom Epith Mitos NNucl Thick UShap USize
1 1 1 1 3 2 1 1 5 1 1
2 1 5 10 3 7 1 2 5 4 4
3 1 1 2 3 2 1 1 3 1 1
4 1 1 4 3 3 1 7 6 8 8
5 1 3 1 3 2 1 1 4 1 1
6 0 8 10 9 7 1 7 8 10 10

54/65

Logistic regression
Class is a 0/1-valued variable indicating if the tumor was malignant (0 if malignant, 1 if benign).

General format
glm(y ~ x, data = DATASET_NAME, family = binomial(link = "logit"))

binom_fit <- glm(Class ~ UShap + USize, data = wbca, family = binomial(link = "logit"))
summary(binom_fit)

Call:
glm(formula = Class ~ UShap + USize, family = binomial(link = "logit"),
 data = wbca)

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.6868 0.4359 13.047 < 0.0000000000000002 ***
UShap -0.8431 0.1593 -5.292 0.000000121 ***
USize -0.8686 0.1690 -5.139 0.000000277 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 881.39 on 680 degrees of freedom
Residual deviance: 218.28 on 678 degrees of freedom
AIC: 224.28

Number of Fisher Scoring iterations: 7

55/65

Odds ratios

An odds ratio (OR) is a measure of association between an exposure and an
outcome. The OR represents the odds that an outcome will occur given a
particular exposure, compared to the odds of the outcome occurring in the
absence of that exposure.

Check out this paper.

Use oddsratio(x, y) from the epitools() package to calculate odds ratios.

56/65

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938757/

Odds ratios

This data shows whether people became ill after eating ice cream in the 1940s.

install.packages(epitools)
library(epitools)
data(oswego)
ice_cream <-
 oswego %>%
 select(ill, vanilla.ice.cream) %>%
 mutate(
 ill = recode(ill, "Y" = 1, "N" = 0),
 vanilla.ice.cream = recode(vanilla.ice.cream, "Y" = 1, "N" = 0)
)

57/65

Odds ratios

head(ice_cream)

 ill vanilla.ice.cream
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1

ice_cream %>% count(ill, vanilla.ice.cream)

 ill vanilla.ice.cream n
1 0 0 18
2 0 1 11
3 1 0 3
4 1 1 43

58/65

Odds ratios

See this case study for more information.

response <- ice_cream %>% pull(ill)
predictor <- ice_cream %>% pull(vanilla.ice.cream)
oddsratio(predictor, response)

$data
 Outcome
Predictor 0 1 Total
 0 18 3 21
 1 11 43 54
 Total 29 46 75

$measure
 odds ratio with 95% C.I.
Predictor estimate lower upper
 0 1.00000 NA NA
 1 21.40719 5.927963 109.4384

$p.value
 two-sided
Predictor midp.exact fisher.exact chi.square
 0 NA NA NA
 1 0.0000002698215 0.0000002597451 0.0000001813314

$correction
[1] FALSE

attr(,"method")
[1] "median-unbiased estimate & mid-p exact CI"

59/65

https://www.opencasestudies.org/ocs-bp-vaping-case-study/#Logistic_regression_%E2%80%9Cby_hand%E2%80%9D_and_by_model

Odds ratios
The odds ratio is 21.4. When the predictor is TRUE (aka the individual ate vanilla ice cream), the odds of
the response (having acute GI illness) were 21 times great than when it is FALSE (did not eat ice cream).

60/65

Functions you might also see
the stat_cor() function in the ggpubr can add correlation coefficients and p-values as a layer to
ggplot objects

the pairs() (graphics package) or ggpairs() (GGally package) functions are also useful for
visualizing correlations across variables in a data frame

acf() in the stats package can compute autocorrelation and cross-correlation with lags

calculate confidence intervals for intercept and slopes from glm/lm objects using confint()

principal components analysis – use prcomp()

·

·

·

·

·

61/65

Final note
Some final notes:

Image by Allison Horst.

Researcher’s responsibility to understand the statistical method they use – underlying
assumptions, correct interpretation of method results

Researcher’s responsibility to understand the R software they use – meaning of function’s
arguments and meaning of function’s output elements

·

·

62/65

https://allisonhorst.com/data-science-art

Summary

glm() fits regression models:

oddsratio() from the epitools package can calculate odds ratios (outside
of logistic regression - which allows more than one explanatory variable)

this is just the tip of the iceberg!

·

Use the formula = argument to specify the model (e.g., y ~ x or y ~ x1
+ x2 using column names)

Use data = to indicate the dataset

Use family = to do a other regressions like logistic, Poisson and more

summary() gives useful statistics

-

-

-

-

·

·

63/65

Resources (also on the website!)

For more check out:

For classes at JHU School of Public Health:

this chapter on modeling in this tidyverse book

this chart on when to do what test

opencasestudies.org

·

·

·

PH.140.621, PH.140.622, PH.140.623, PH.140.62 - Statistical Methods in Public
Health I, II, III, and IV - The class is mostly taught in STATA, but you can also join
a group of students working in R. The class covers many topics in statistical
analysis for public health data.

PH.140.778 - Statistical Computing, Algorithm, and Software Development - A
more advanced course for working with data in R. Content for similar topics as
this course can also be found on Leanpub.

·

·

64/65

https://jhudatascience.org/intro_to_r/resources.html
https://jhudatascience.org/tidyversecourse/model.html#linear-modeling
https://www.scribbr.com/statistics/statistical-tests/
http://localhost:3000/modules/Statistics/www.opencasestudies.org
https://e-catalogue.jhu.edu/course-descriptions/biostatistics/
https://www.jhsph.edu/courses/course/36737/2022/140.778.01/statistical-computing-algorithm-and-software-devel

Lab Part 2
� Class Website

� Lab

� Day 8 Cheatsheet

Image by Gerd Altmann from Pixabay

65/65

https://jhudatascience.org/intro_to_r/
https://jhudatascience.org/intro_to_r/modules/Statistics/lab/Statistics_Lab.Rmd
https://jhudatascience.org/intro_to_r/modules/cheatsheets/Day-8.pdf
https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226

