One dimensional vectors

Data classes/types

* Character: strings or individual characters, quoted
* Numeric: any real number(s)
* Integer: any integer(s)/whole numbers (1,2,3)
* Double: any number with fractional values (1.2, 4.01, 1.00004)
* Factor: categorical/qualitative variables
* Logical: variables composed of TRUE or FALSE
* Date/POSIXct: represents calendar dates and times

Character and numeric

We have already covered character and numeric types.

class(c("tree", "cloud", "stars_&_sky"))
## [1] "character"
class(c(1, 4, 7))
## [1] "numeric"

Character and numeric

This can also be a bit tricky.

class(c(1, 2, "tree"))
## [1] "character"
class(c("1", "4", "7"))
## [1] "character"

Logical

logical is a type that only has two possible elements: TRUE and FALSE

x <- c(TRUE, FALSE, TRUE, TRUE, FALSE)
class(x)
## [1] "logical"

Note that logical elements are NOT in quotes.

z <- c("TRUE", "FALSE", "TRUE", "FALSE")
class(z)
## [1] "character"

Why is Class important?

The class of the data tells R how to process the data. For example, it determines whether you can make summary statistics (numbers) or if you can sort alphabetically (characters).

General Class Information

There is one useful functions associated with practically all R classes:

as.CLASS_NAME(x) coerces between classes. It turns x into a certain class.

Examples:

  • as.numeric()
  • as.character()
  • as.logical()
  • as.double()
  • as.integer()
  • as.Date()
  • as.factor() (More on this one later!)

Coercing: seamless transition

Sometimes coercing works great!

as.character(4)
## [1] "4"
as.numeric(c("1", "4", "7"))
## [1] 1 4 7
as.logical(c("TRUE", "FALSE", "FALSE"))
## [1]  TRUE FALSE FALSE
as.logical(0)
## [1] FALSE

Coercing: not-so-seamless

When interpretation is ambiguous, R will return NA (an R constant representing “Not Available” i.e. missing value)

as.numeric(c("1", "4", "7a"))
## Warning: NAs introduced by coercion
## [1]  1  4 NA
as.logical(c("TRUE", "FALSE", "UNKNOWN"))
## [1]  TRUE FALSE    NA

GUT CHECK!

What is one reason we might want to convert data to numeric? A. So we can take the mean B. So the data looks better C. So our data is correct

Number Subclasses

There are two major number subclasses or types

  1. Double (1.003)
  2. Integer (1)

Double

Double is equivalent to numeric. It is a number that contains fractional values . Can be any amount of places after the decimal.

Double stands for double-precision

y <- c(1.1, 2.0, 3.21, 4.5, 5.62)
y
## [1] 1.10 2.00 3.21 4.50 5.62
class(y)
## [1] "numeric"
typeof(y)
## [1] "double"

Significant figures and other formats

Integer

Integer is a special number that contains only whole numbers.

y
## [1] 1.10 2.00 3.21 4.50 5.62
y_int <- as.integer(y)
y_int
## [1] 1 2 3 4 5
class(y_int)
## [1] "integer"
typeof(y_int)
## [1] "integer"

Integer

Can use as.integer() function to create integers (unless they are read in as integers or created as such with seq and sample). Otherwise, will be double by default.

x <- c(1, 2, 3, 4, 5) # technically integers
class(x)
## [1] "numeric"
typeof(x)
## [1] "double"

Checking double vs integer

A tibble will show the difference (as does glimpse()).

my_data <- tibble(double_var = y, int_var = y_int)
my_data
## # A tibble: 5 × 2
##   double_var int_var
##        <dbl>   <int>
## 1       1.1        1
## 2       2          2
## 3       3.21       3
## 4       4.5        4
## 5       5.62       5
glimpse(my_data)
## Rows: 5
## Columns: 2
## $ double_var <dbl> 1.10, 2.00, 3.21, 4.50, 5.62
## $ int_var    <int> 1, 2, 3, 4, 5

Factors

A factor is a special character vector where the elements have pre-defined groups or ‘levels’. You can think of these as qualitative or categorical variables. Order is often important.

Examples:

  • red, orange, yellow, green, blue, purple
  • breakfast, lunch, dinner
  • baby, toddler, child, teen, adult
  • Strongly Agree, Agree, Neutral, Disagree, Strongly Disagree
  • beginner, novice, intermediate, expert

Factors

Use the factor() function to create factors.

x <- c("small", "medium", "large", "medium", "large")
class(x)
## [1] "character"
x_fact <- factor(x)
class(x_fact)
## [1] "factor"
x_fact
## [1] small  medium large  medium large 
## Levels: large medium small

Note that levels are, by default, in alphanumerical order!

Factors

Q: Why not use as.factor() ?

A: You can coerce with as.factor(). But you can’t specify levels! More on this soon.

Factors

You can learn what are the unique levels of a factor vector

levels(x_fact)
## [1] "large"  "medium" "small"

More on how to change the levels ordering in a lecture coming up!

Factors

Factors can be converted to numeric or character very easily.

x_fact
## [1] small  medium large  medium large 
## Levels: large medium small
as.character(x_fact)
## [1] "small"  "medium" "large"  "medium" "large"
as.numeric(x_fact)
## [1] 3 2 1 2 1

Class conversion in with a dataset

circ <- 
  read_csv(
"https://jhudatascience.org/intro_to_r/data/Charm_City_Circulator_Ridership.csv"
)
## Rows: 1146 Columns: 15
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): day, date
## dbl (13): orangeBoardings, orangeAlightings, orangeAverage, purpleBoardings,...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(circ)
## # A tibble: 6 × 15
##   day       date  orangeBoardings orangeAlightings orangeAverage purpleBoardings
##   <chr>     <chr>           <dbl>            <dbl>         <dbl>           <dbl>
## 1 Monday    01/1…             877             1027          952               NA
## 2 Tuesday   01/1…             777              815          796               NA
## 3 Wednesday 01/1…            1203             1220         1212.              NA
## 4 Thursday  01/1…            1194             1233         1214.              NA
## 5 Friday    01/1…            1645             1643         1644               NA
## 6 Saturday  01/1…            1457             1524         1490.              NA
## # ℹ 9 more variables: purpleAlightings <dbl>, purpleAverage <dbl>,
## #   greenBoardings <dbl>, greenAlightings <dbl>, greenAverage <dbl>,
## #   bannerBoardings <dbl>, bannerAlightings <dbl>, bannerAverage <dbl>,
## #   daily <dbl>

Class conversion in with a dataset

Say we want to change daily to be an integer. We would need to use mutate(). Let’s create a new column ‘daily_int’ so it is easier to see what is happening.

circ %>% 
  mutate(daily_int= as.integer(daily)) %>% 
  select(daily, daily_int)
## # A tibble: 1,146 × 2
##    daily daily_int
##    <dbl>     <int>
##  1  952        952
##  2  796        796
##  3 1212.      1211
##  4 1214.      1213
##  5 1644       1644
##  6 1490.      1490
##  7  888.       888
##  8 1000.       999
##  9 1035       1035
## 10 1396.      1395
## # ℹ 1,136 more rows

Classes Overview

Example Class Type Notes
1.1 Numeric double default for numbers
1 integer integer Need to coerce to integer with as.integer() or use sample() or seq() with whole numbers
“FALSE”, “Ball” Character Character Need quotes
FALSE, TRUE logical logical No quotes
“Small”, “Large” Factor Factor Need to coerce to factor with factor()

Summary

  • There are two types of number class objects: integer and double
  • Logic class objects only have TRUE or FALSE (without quotes)
  • class() can be used to test the class of an object x
  • as.CLASS_NAME(x) can be used to change the class of an object x
  • Factors are a special character class that has levels - more on that soon!
  • tibbles show column classes!

Special data classes

Dates

There are two most popular R classes used when working with dates and times:

  • Date class representing a calendar date
  • POSIXct class representing a calendar date with hours, minutes, seconds

We convert data from character to Date/POSIXct to use functions to manipulate date/date and time

lubridate is a powerful, widely used R package from “tidyverse” family to work with Date / POSIXct class objects

Creating Date class object

class("2021-06-15")
## [1] "character"
library(lubridate)

ymd("2021-06-15") # lubridate package Year Month Day
## [1] "2021-06-15"
class(ymd("2021-06-15")) # lubridate package
## [1] "Date"
class(date("2021-06-15")) # lubridate package
## [1] "Date"

Note for function ymd: year month day

The function must match the format

mdy("06/15/2021")
## [1] "2021-06-15"
dmy("15-June-2021")
## [1] "2021-06-15"
ymd("2021-06-15")
## [1] "2021-06-15"

They right lubridate function needs to be used

Must match the data format!

ymd("06/15/2021") # This doesn't work - gives NA
## Warning: All formats failed to parse. No formats found.
## [1] NA
mdy("06/15/2021") # This works
## [1] "2021-06-15"

Dates are useful!

a <- ymd("2021-06-15")
b <- ymd("2021-06-18")
a - b
## Time difference of -3 days

Can also include hours, minutes, seconds

class("2013-01-24 19:39:07")
## [1] "character"
ymd_hms("2013-01-24 19:39:07") # lubridate package
## [1] "2013-01-24 19:39:07 UTC"
ymd_hms("2013-01-24 19:39:07") %>% class()
## [1] "POSIXct" "POSIXt"

UTC represents time zone, by default: Coordinated Universal Time

Note for function ymd_hms: year month day hour minute second.

Class conversion in a dataset

Note dates are always displayed year month day, even if made with mdy!

circ_dates <- circ %>% select(date)
circ_dates <- 
  circ_dates %>% mutate(date_formatted = mdy(date))
glimpse(circ_dates)
## Rows: 1,146
## Columns: 2
## $ date           <chr> "01/11/2010", "01/12/2010", "01/13/2010", "01/14/2010",…
## $ date_formatted <date> 2010-01-11, 2010-01-12, 2010-01-13, 2010-01-14, 2010-0…

Once a variable is a date type we can convert to other types

circ_dates %>% 
  mutate(year = year(date_formatted)) %>%
  mutate(month = month(date_formatted)) %>% 
  glimpse()
## Rows: 1,146
## Columns: 4
## $ date           <chr> "01/11/2010", "01/12/2010", "01/13/2010", "01/14/2010",…
## $ date_formatted <date> 2010-01-11, 2010-01-12, 2010-01-13, 2010-01-14, 2010-0…
## $ year           <dbl> 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2…
## $ month          <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…

Other data classes

Two-dimensional data classes

Two-dimensional classes are those we would often use to store data read from a file

  • a data frame (data.frame or tibble class)
  • a matrix (matrix class)
    • also composed of rows and columns
    • unlike data.frame or tibble, the entire matrix is composed of one R class
    • for example: all entries are numeric, or all entries are character

Lists

  • One other data type that is the most generic are lists.
  • Can hold vectors, strings, matrices, models, list of other list!
  • Lists are used when you need to do something repeatedly across lots of data - for example wrangling several similar files at once
  • Lists are a bit more advanced but you may encounter them when you work with others or look up solutions

Making Lists

Can be created using list()

mylist <- list(c("A", "b", "c"), c(1, 2, 3))
mylist
## [[1]]
## [1] "A" "b" "c"
## 
## [[2]]
## [1] 1 2 3
class(mylist)
## [1] "list"

Summary

  • coerce between classes using as.numeric() or as.character()
  • data frames, tibbles, matrices, and lists are all classes of objects
  • lists can contain multiples of any other class of data including lists!
  • calendar dates can be represented with the Date class using ymd(), mdy() functions from lubridate package

Lab

Extra Slides

Matrices

as.matrix() creates a matrix from a data frame or tibble (where all values are the same class).

circ_mat <- select(circ, contains("orange")) %>%
  head(n = 3)
circ_mat
## # A tibble: 3 × 3
##   orangeBoardings orangeAlightings orangeAverage
##             <dbl>            <dbl>         <dbl>
## 1             877             1027          952 
## 2             777              815          796 
## 3            1203             1220         1212.
as.matrix(circ_mat)
##      orangeBoardings orangeAlightings orangeAverage
## [1,]             877             1027         952.0
## [2,]             777              815         796.0
## [3,]            1203             1220        1211.5

Matrices

matrix() creates a matrix from scratch.

matrix(1:6, ncol = 2)
##      [,1] [,2]
## [1,]    1    4
## [2,]    2    5
## [3,]    3    6

More about Lists

List elements can be named

mylist_named <- list(
  letters = c("A", "b", "c"),
  numbers = c(1, 2, 3),
  one_matrix = matrix(1:4, ncol = 2)
)
mylist_named
## $letters
## [1] "A" "b" "c"
## 
## $numbers
## [1] 1 2 3
## 
## $one_matrix
##      [,1] [,2]
## [1,]    1    3
## [2,]    2    4

Some useful functions from lubridate to manipulate Date objects

x <- ymd(c("2021-06-15", "2021-07-15"))
x
## [1] "2021-06-15" "2021-07-15"
day(x) # see also: month(x) , year(x)
## [1] 15 15
x + days(10)
## [1] "2021-06-25" "2021-07-25"
x + months(1) + days(10)
## [1] "2021-07-25" "2021-08-25"
wday(x, label = TRUE)
## [1] Tue Thu
## Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

Some useful functions from lubridate to manipulate POSIXct objects

x <- ymd_hms("2013-01-24 19:39:07")
x
## [1] "2013-01-24 19:39:07 UTC"
date(x)
## [1] "2013-01-24"
x + hours(3)
## [1] "2013-01-24 22:39:07 UTC"
floor_date(x, "1 hour") # see also: ceiling_date()
## [1] "2013-01-24 19:00:00 UTC"

Differences in dates

x1 <- ymd(c("2021-06-15"))
x2 <- ymd(c("2021-07-15"))

difftime(x2, x1, units = "weeks")
## Time difference of 4.285714 weeks
as.numeric(difftime(x2, x1, units = "weeks"))
## [1] 4.285714

Similar can be done with time (e.g. difference in hours).

Data Selection

Matrices

n <- 1:9
n
## [1] 1 2 3 4 5 6 7 8 9
mat <- matrix(n, nrow = 3)
mat
##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9

Vectors: data selection

To get element(s) of a vector (one-dimensional object):

  • Type the name of the variable and open the rectangular brackets [ ]
  • In the rectangular brackets, type index (/vector of indexes) of element (/elements) you want to pull. In R, indexes start from 1 (not: 0)
x <- c("a", "b", "c", "d", "e", "f", "g", "h")
x
## [1] "a" "b" "c" "d" "e" "f" "g" "h"
x[2]
## [1] "b"
x[c(1, 2, 100)]
## [1] "a" "b" NA

Matrices: data selection

Note you cannot use dplyr functions (like select) on matrices. To subset matrix rows and/or columns, use matrix[row_index, column_index].

mat
##      [,1] [,2] [,3]
## [1,]    1    4    7
## [2,]    2    5    8
## [3,]    3    6    9
mat[1, 1] # individual entry: row 1, column 1
## [1] 1
mat[1, 2] # individual entry: row 1, column 2
## [1] 4
mat[1, ] # first row
## [1] 1 4 7
mat[, 1] # first column
## [1] 1 2 3
mat[c(1, 2), c(2, 3)] # subset of original matrix: two rows and two columns
##      [,1] [,2]
## [1,]    4    7
## [2,]    5    8

Lists: data selection

You can reference data from list using $ (if elements are named) or using [[ ]]

mylist_named[[1]]
## [1] "A" "b" "c"
mylist_named[["letters"]] # works only for a list with elements' names
## [1] "A" "b" "c"
mylist_named$letters # works only for a list with elements' names
## [1] "A" "b" "c"