
Basic R

Working in R

For now, we will be working in the Console (Pane 1)

2/40

R as a calculator

The R console is a full calculator

Try to play around with it:

·

·

+, -, /, * are add, subtract, divide and multiply

^ or ** is power

parentheses – (and) – work with order of operations

%% finds the remainder

-

-

-

-

3/40

R as a calculator

Try evaluating the following. Type these in the Console and press return to
evaluate:

2 + 2

2 * 3 / 4

2^4 - 1

·

·

·

4/40

Basic terms: “object”

Object - an object is something that can be worked with or on in R - can be lots
of different things!

You can think of objects as nouns in R.

… many more

a variable

a dataset

a plot

·

·

·

5/40

Assigning values to objects

You can create objects within the R environment and from files on your
computer

R uses <- to create objects (you might also see = used, but this is not best
practice)

·

·

x <- 2
x

[1] 2

x * 4

[1] 8

x + 2

[1] 4

6/40

GUT CHECK: What is an “object”?

A. Something I can touch

B. Something that can be worked with in R

C. A software version

7/40

Objects with text

Create objects with text using quotation marks:

y <- "hello world!"
y

[1] "hello world!"

8/40

numeric vs. character classes?

We will talk in-depth about classes. For now:

numeric

character

Numbers

No quotation marks

·

·

2

Text with quotation marks

Green lettering (default)

·

·

"hello!"

9/40

Common issues

TROUBLESHOOTING: R is case sensitive

Object names are case-sensitive, i.e., X and x are different

x

[1] 2

X

Error in eval(expr, envir, enclos): object 'X' not found

11/40

TROUBLESHOOTING: No commas in big numbers

Commas separate objects in R, so they shouldn’t be used when entering big
numbers.

z <- 3,000

Error: <text>:1:7: unexpected ','
1: z <- 3,
 ^

12/40

TROUBLESHOOTING: Complete the statement

+ indicates an incomplete statement. Hit “esc” to clear and bring back the >.

10 /

Error: <text>:2:0: unexpected end of input
1: 10 /
 ^

13/40

Simple object practice

Try assigning your full name to an R object called name

14/40

Simple object practice

Try assigning your full name to an R object called name

name <- "Ava Hoffman"
name

[1] "Ava Hoffman"

15/40

Combining objects with c()

Use c() to collect/combine single R objects into a vector of R objects. It is mostly
used for creating vectors of numbers and character strings.

x <- c(1, 4, 6, 8)
x

[1] 1 4 6 8

16/40

Combining objects with c()

Try assigning your first and last name as 2 separate character strings into a
vector called name2

17/40

Combining objects with c()

Try assigning your first and last name as 2 separate character strings into a
vector called name2

name2 <- c("Ava", "Hoffman")
name2

[1] "Ava" "Hoffman"

18/40

Basic terms: “function”

Function - a function is a piece of code that allows you to do something in R. You
can write your own, use functions that come directly from installing R, or use
functions from additional packages.

You can think of a function as verb in R.

A function might help you add numbers together, create a plot, or organize your
data.

19/40

Using functions on our vector

class() tells us what kind of values the object contains (numeric, character,
etc)

length() tells us how many elements.

·

·

name

[1] "Ava Hoffman"

class(name)

[1] "character"

x

[1] 1 4 6 8

length(x)

[1] 4

20/40

GUT CHECK: What is a “function”?

A. a number or text

B. a button inside RStudio

C. code that does something

21/40

Combining vectors

It’s fine to combine vectors, but all values will end up with the same class!

vect <- c(name, x)
vect

[1] "Ava Hoffman" "1" "4" "6" "8"

class(vect)

[1] "character"

22/40

Practicing functions

What do you expect for the length of the name2 object?

What is the class?

23/40

Practicing functions

What do you expect for the length of the name2 object?

What is the class?

length(name2)

[1] 2

class(name2)

[1] "character"

24/40

Commenting in code

creates a comment in R code

1 + 2 <- this does not get run

1 + 2 # <- this does

[1] 3

25/40

Lab Part 1

This lab is a webpage. Soon we will be using R specific files!

� Lab

Assign values to objects with <- (new name on left side)

Use the c() function to combine text/numbers/etc. into a vector

class() tells you the class (kind) of object

Use the length() function to determine number of elements

for comments or to deactivate a line of code

·

·

·

·

·

26/40

https://jhudatascience.org/intro_to_r/modules/Basic_R/lab/Basic_R_Lab.html

Math + vector objects

You can perform math with vectors.

x + 2

[1] 3 6 8 10

x * 3

[1] 3 12 18 24

x + c(1, 2, 3, 4)

[1] 2 6 9 12

27/40

Math + vector objects

But math can only be performed on numbers.

name2 + 4

Error in name2 + 4: non-numeric argument to binary operator

28/40

Reassigning to a new object

Save these modified vectors as a new vector called y.

Note that the R object y is no longer “hello world!” - It has been overwritten by
assigning new data to the same name.

y <- x + c(1, 2, 3, 4)
y

[1] 2 6 9 12

29/40

Reassigning to a new object

Reassigning allows you to make changes “in place”

results not stored:
x + c(1, 2, 3, 4)

x remains unchanged, results stored in `y`:
y <- x + c(1, 2, 3, 4)

replace `x` in place
x <- x + c(1, 2, 3, 4)

30/40

R objects

You can get more attributes than just class. The function str() gives you the
structure of the object.

This tells you that x is a numeric vector and tells you the length.

str(x)

 num [1:4] 1 4 6 8

str(y)

 num [1:4] 2 6 9 12

31/40

Basic terms: “argument”

Argument - what you pass to a function

Like an adverb.

can be data like the number 1 or 20234

can be options about how you want the function to work

separated by commas

·

·

·

32/40

Create vectors with seq()

For numeric: seq()

The from argument says what number to start on.

The to argument says what number to not go above.

The by argument says how much to increment by.

The length.out argument says how long the vector should be overall.

·

·

·

·

seq(from = 0, to = 1, by = 0.2)

[1] 0.0 0.2 0.4 0.6 0.8 1.0

seq(from = 0, to = 10, by = 1)

 [1] 0 1 2 3 4 5 6 7 8 9 10

seq(from = -5, to = 5, length.out = 10)

 [1] -5.0000000 -3.8888889 -2.7777778 -1.6666667 -0.5555556 0.5555556
 [7] 1.6666667 2.7777778 3.8888889 5.0000000

33/40

Useful functions to create vectors rep()

For character: rep() can create very long vectors. Works for creating character
and numeric vectors.

The each argument specifies how many of each item you want repeated. The
times argument specifies how many times you want the vector repeated.

rep(WHAT_TO_REPEAT, arguments)

rep(c("black", "white"), each = 3)

[1] "black" "black" "black" "white" "white" "white"

rep(c("black", "white"), times = 3)

[1] "black" "white" "black" "white" "black" "white"

rep(c("black", "white"), each = 2, times = 2)

[1] "black" "black" "white" "white" "black" "black" "white" "white"

34/40

Creating numeric vectors sample()

You can use the sample() function to make a random sequence. The x
argument specifies what you are sampling from. The size argument specifies
how many values there should be. The replace argument specifies if values
should be replaced or not.

seq_hun <- seq(from = 0, to = 100, by = 1)
seq_hun

 [1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 [19] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 [37] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 [55] 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 [73] 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 [91] 90 91 92 93 94 95 96 97 98 99 100

y <- sample(x = seq_hun, size = 5, replace = TRUE)
y

[1] 89 69 78 77 13

35/40

Installing packages to do more!

Some functions and data come with R right out of the box (“base R”). We will add
more functionality with packages. Think of these like “expansion packs” for R.

Must be done once for each installation of R (e.g., version 4.2 >> 4.3).

An important package we will use is tidyverse. It is a mega-package great for
data import, wrangling, and visualization.

install.packages("tidyverse")

36/40

Loading packages

After installing packages, you will need to “load” them into memory so that you
can use them.

This must be done every time you start R.

We use a function called library to load packages.

library(tidyverse)

37/40

Installing + Loading packages

38/40

Summary

R functions as a calculator

Use <- to save (assign) values to objects. Reassigning allows you to make
changes “in place”.

Use c() to combine into vectors

length(), class(), and str() tell you information about an object

The sequence seq() function helps you create numeric vectors (from,to, by,
and length.out arguments)

The repeat rep() function helps you create vectors with the each and times
arguments

sample() makes random vectors

install.packages() and library() install and load packages, respectively.

·

·

·

·

·

·

·

·

39/40

Summary

� Class Website

� Basic R Lab

� Day 1 Cheatsheet

Image by Gerd Altmann from Pixabay

40/40

https://jhudatascience.org/intro_to_r/
https://jhudatascience.org/intro_to_r/modules/Basic_R/lab/Basic_R_Lab.html
https://jhudatascience.org/intro_to_r/modules/cheatsheets/Day-1.pdf
https://pixabay.com/users/geralt-9301/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=812226

