
Statistics

Overview

We will cover how to use R to compute some of basic statistics and fit some basic
statistical models.

DISCLAIMER: We will focus on how to use R software to do these. We will be
glossing over the statistical theory and “formulas” for these tests. Moreover, we
do not claim the data we use for demonstration meet assumptions of the
methods.

There are plenty of resources online for learning more about these methods, as
well as dedicated Biostatistics series (at different advancement levels) at the JHU
School of Public Health.

Correlation

T-test

Linear Regression

Logistic Regression

·

·

·

·

2/38

Correlation

Correlation

Function cor() computes correlation in R

To use:

By default, Pearson correlation coefficient is computed.

cor(x, y = NULL, use = "everything",

 method = c("pearson", "kendall", "spearman"))

provide two numeric vectors (arguments x, y) to compute correlation between
them, or

provide matrix or data frame (argument x) that has at least 2 columns (must
be numeric) to compute correlation between all pairs

·

·

4/38

Correlation
https://jhudatascience.org/intro_to_R_class/data/Charm_City_Circulator_Ridership.csv

circ <- jhur::read_circulator()

head(circ)

A tibble: 6 x 15

 day date orangeBoardings orangeAlightings orangeAverage purpleBoardin
 <chr> <chr> <dbl> <dbl> <dbl> <db
1 Monday 01/11/… 877 1027 952
2 Tuesday 01/12/… 777 815 796
3 Wednes… 01/13/… 1203 1220 1212.
4 Thursd… 01/14/… 1194 1233 1214.
5 Friday 01/15/… 1645 1643 1644
6 Saturd… 01/16/… 1457 1524 1490.
… with 9 more variables: purpleAlightings <dbl>, purpleAverage <dbl>,

greenBoardings <dbl>, greenAlightings <dbl>, greenAverage <dbl>,

bannerBoardings <dbl>, bannerAlightings <dbl>, bannerAverage <dbl>,

daily <dbl>

5/38

https://jhudatascience.org/intro_to_R_class/data/Charm_City_Circulator_Ridership.csv

Correlation for two vectors

First, we compute correlation by providing two vectors.

Like other functions, if there are NAs, you get NA as the result. But if you specify
use only the complete observations, then it will give you correlation using the
non-missing data.

x <- pull(circ, orangeAverage)
y <- pull(circ, purpleAverage)

cor(x, y)

[1] NA

cor(x, y, use = "complete.obs")

[1] 0.9195356

6/38

Correlation for two vectors with plot

Note that you can add the correlation value to a plot, via the annotate().

cor_val <- cor(x, y, use = "complete.obs")

cor_val_label <- paste0("r = ", round(cor_val, 3))

circ %>%

 ggplot(aes(x = orangeAverage, y = purpleAverage)) +

 geom_point(size = 0.3) +

 annotate("text", x = 2000, y = 7500, label = cor_val_label, size = 5)

7/38

Correlation for data frame columns

We can compute correlation for all pairs of columns of a data frame / matrix. We
typically just say, “compute correlation matrix”.

Columns must be all numeric!

circ_subset_Average <- circ %>% select(ends_with("Average"))

dim(circ_subset_Average)

[1] 1146 4

cor_mat <- cor(circ_subset_Average, use = "complete.obs")

cor_mat

 orangeAverage purpleAverage greenAverage bannerAverage

orangeAverage 1.0000000 0.9078826 0.8395806 0.5447031

purpleAverage 0.9078826 1.0000000 0.8665630 0.5213462

greenAverage 0.8395806 0.8665630 1.0000000 0.4533421

bannerAverage 0.5447031 0.5213462 0.4533421 1.0000000

8/38

Correlation for data frame columns with plot

Google, “r correlation matrix plot”·

library(corrplot)

corrplot(cor_mat, type = "upper", order = "hclust")

9/38

Lab Part 1

Website

10/38

http://jhudatascience.org/intro_to_R_class/index.html

T-test

T-test

The commonly used are:

The t.test() function in R is one to address the above.

one-sample t-test – used to test mean of a variable in one group

two-sample t-test – used to test difference in means of a variable between
two groups (if the “two groups” are data of the same individuals collected at 2
time points, we say it is two-sample paired t-test)

·

·

t.test(x, y = NULL,

 alternative = c("two.sided", "less", "greater"),

 mu = 0, paired = FALSE, var.equal = FALSE,

 conf.level = 0.95, ...)

12/38

Running one-sample t-test

It tests mean of a variable in one group. By default (i.e., without us explicitly
specifying values of other arguments):

tests whether a mean of a variable is equal to 0 (mu=0)

uses “two sided” alternative (alternative = "two.sided")

returns result assuming confidence level 0.95 (conf.level = 0.95)

·

·

·

x <- pull(circ, orangeAverage)
t.test(x)

 One Sample t-test

data: x

t = 83.279, df = 1135, p-value < 0.00000000000000022

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

 2961.700 3104.622

sample estimates:

mean of x

 3033.161

13/38

Running two-sample t-test
It tests test difference in means of a variable between two groups. By default:

tests whether difference in means of a variable is equal to 0 (mu=0)

uses “two sided” alternative (alternative = "two.sided")

returns result assuming confidence level 0.95 (conf.level = 0.95)

assumes data are not paired (paired = FALSE)

assumes true variance in the two groups is not equal (var.equal = FALSE)

·

·

·

·

·

x <- pull(circ, orangeAverage)
y <- pull(circ, purpleAverage)
t.test(x, y)

 Welch Two Sample t-test

data: x and y

t = -17.076, df = 1984, p-value < 0.00000000000000022

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -1096.7602 -870.7867

sample estimates:

mean of x mean of y

 3033.161 4016.935

14/38

T-test: retrieving information from the result

Object returned from t.test() function is a named list. We can use it to access
test result elements. The easiest way to do this is to use base R ($ notation).

result <- t.test(x, y)

is.list(result)

[1] TRUE

names(result)

 [1] "statistic" "parameter" "p.value" "conf.int" "estimate"

 [6] "null.value" "stderr" "alternative" "method" "data.name"

result$statistic

 t

-17.07579

result$p.value

[1] 0.004201155

15/38

T-test: retrieving information from the result with broom package

The broom package has a tidy() function that can organize results into a data
frame so that they are easily manipulated (or nicely printed)

library(broom)

result <- t.test(x, y)

result_tidy <- tidy(result)

result_tidy

A tibble: 1 x 10

 estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 -984. 3033. 4017. -17.1 4.20e-61 1984. -1097. -871.
… with 2 more variables: method <chr>, alternative <chr>

16/38

Some other statistical tests

wilcox.test() – Wilcoxon signed rank test, Wilcoxon rank sum test

shapiro.test() – Shapiro test

ks.test() – Kolmogorov-Smirnov test

var.test()– Fisher’s F-Test

chisq.test() – Chi-squared test

·

·

·

·

·

17/38

Lab Part 2

Website

18/38

http://jhudatascience.org/intro_to_R_class/index.html

Regression

Linear regression

Linear regression is a method to model the relationship between a response and
one or more explanatory variables.

We provide a little notation here so some of the commands are easier to put in
the proper context.

where:

= α + β +yi xi εi

 is the outcome for person i

 is the intercept

 is the slope

 is the predictor for person i

 is the residual variation for person i

· yi

· α

· β

· xi

· εi

20/38

Linear regression

21/38

Linear regression

Linear regression is a method to model the relationship between a response and
one or more explanatory variables.

We provide a little notation here so some of the commands are easier to put in
the proper context.

where:

= α + + + +yi β1xi1 β2xi2 β3xi3 εi

 is the outcome for person i

 is the intercept

, , are the slopes for variables , ,

, , are the predictors for person i

 is the residual variation for person i

· yi

· α

· β1 β2 β2 xi1 xi2 xi3

· xi1 xi2 xi3

· εi

22/38

Linear regression fit in R

To fit linear models in R, we use function lm().

We typically provide two arguments:

lm(formula, data, subset, weights, na.action,

 method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,

 singular.ok = TRUE, contrasts = NULL, offset, ...)

formula – model formula written using names of columns in our data

data – our data frame

·

·

23/38

Linear regression fit in R: model formula

Model formula

translates to y ~ x in R formula for this example.

In practice, y and x are replaced with the names of columns from our data set.

= α + β +yi xi εi

For example, if we want to fit a regression model where outcome is income
and predictor is years_of_education, our formula would be:

income ~ years_of_education

·

24/38

Linear regression fit in R: model formula

Model formula

translates to y ~ x1 + x2 + x3 in R formula for this example.

In practice, y and x1, x2, x3 are replaced with the names of columns from our
data set.

= α + + + +yi β1xi1 β2xi2 β3xi3 εi

For example, if we want to fit a regression model where outcome is income
and predictors are years_of_education, age, location then our formula
would be:

income ~ years_of_education + age + location

·

25/38

Linear regression

We will use kaggleCarAuction.csv dataset from one of the Kaggle
competitions.

https://jhudatascience.org/intro_to_R_class/data/kaggleCarAuction.csv

cars <- jhur::read_kaggle()

head(cars)

A tibble: 6 x 34

 RefId IsBadBuy PurchDate Auction VehYear VehicleAge Make Model Trim SubMod
 <dbl> <dbl> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr> <chr>
1 1 0 12/7/2009 ADESA 2006 3 MAZDA MAZD… i 4D SED
2 2 0 12/7/2009 ADESA 2004 5 DODGE 1500… ST QUAD C
3 3 0 12/7/2009 ADESA 2005 4 DODGE STRA… SXT 4D SED
4 4 0 12/7/2009 ADESA 2004 5 DODGE NEON SXT 4D SED
5 5 0 12/7/2009 ADESA 2005 4 FORD FOCUS ZX3 2D COU
6 6 0 12/7/2009 ADESA 2004 5 MITS… GALA… ES 4D SED
… with 24 more variables: Color <chr>, Transmission <chr>, WheelTypeID <chr>
WheelType <chr>, VehOdo <dbl>, Nationality <chr>, Size <chr>,

TopThreeAmericanName <chr>, MMRAcquisitionAuctionAveragePrice <chr>,

MMRAcquisitionAuctionCleanPrice <chr>,

MMRAcquisitionRetailAveragePrice <chr>,

MMRAcquisitonRetailCleanPrice <chr>, MMRCurrentAuctionAveragePrice <chr>,

MMRCurrentAuctionCleanPrice <chr>, MMRCurrentRetailAveragePrice <chr>,

MMRCurrentRetailCleanPrice <chr>, PRIMEUNIT <chr>, AUCGUART <chr>,

BYRNO <dbl>, VNZIP1 <dbl>, VNST <chr>, VehBCost <dbl>, IsOnlineSale <dbl>,
WarrantyCost <dbl>

26/38

https://jhudatascience.org/intro_to_R_class/data/kaggleCarAuction.csv

Linear regression: model fitting

We fit linear regression model with vehicles odometer (distance traveled by a
vehicle; VehOdo) as an outcome and vehicle (VehicleAge) age as a predictor.

fit <- lm(VehOdo ~ VehicleAge, data = cars)

print(fit)

Call:
lm(formula = VehOdo ~ VehicleAge, data = cars)

Coefficients:

(Intercept) VehicleAge

 60127 2723

27/38

Linear regression: model summary

The summary() command returns a list that shows us some more detail

sfit <- summary(fit)
print(sfit)

Call:
lm(formula = VehOdo ~ VehicleAge, data = cars)

Residuals:

 Min 1Q Median 3Q Max

-71097 -9500 1383 10323 41037

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 60127.24 134.80 446.04 <0.0000000000000002 ***

VehicleAge 2722.94 29.86 91.18 <0.0000000000000002 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13810 on 72981 degrees of freedom

Multiple R-squared: 0.1023, Adjusted R-squared: 0.1023

F-statistic: 8314 on 1 and 72981 DF, p-value: < 0.00000000000000022

28/38

Linear regression: retrieving information with broom package

Use tidy to create a tibble with the coefficient estimates.

tidy() is a function from the broom package

tidy(sfit)

A tibble: 2 x 5

 term estimate std.error statistic p.value

 <chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 60127. 135. 446. 0

2 VehicleAge 2723. 29.9 91.2 0

29/38

Linear regression: model summary

Model summary is a named list and we can access its specific elements. Again,
we should use base R ($ notation).

names(sfit)

 [1] "call" "terms" "residuals" "coefficients"

 [5] "aliased" "sigma" "df" "r.squared"

 [9] "adj.r.squared" "fstatistic" "cov.unscaled"

sfit$r.squared

[1] 0.1022682

30/38

Linear regression: multiple predictors
Let’s try adding another explanatory variable to our model, Warranty price (WarrantyCost)

fit_2 <- lm(VehOdo ~ VehicleAge + WarrantyCost, data = cars)

summary(fit_2)

Call:
lm(formula = VehOdo ~ VehicleAge + WarrantyCost, data = cars)

Residuals:
 Min 1Q Median 3Q Max

-67895 -8673 940 9305 45765

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 52422.92491 145.98775 359.09 <0.0000000000000002 ***

VehicleAge 1944.65509 28.85619 67.39 <0.0000000000000002 ***

WarrantyCost 8.58147 0.08251 104.01 <0.0000000000000002 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12890 on 72980 degrees of freedom

Multiple R-squared: 0.2182, Adjusted R-squared: 0.2181

F-statistic: 1.018e+04 on 2 and 72980 DF, p-value: < 0.00000000000000022

31/38

Linear regression: factors

Factors get special treatment in regression models - lowest level of the factor is
the comparison group, and all other factors are relative to its values.

TopThreeAmericanName states if the manufacturer is one of the top three
American manufacturers.

top_3 <- pull(cars, TopThreeAmericanName)

table(top_3)

top_3
CHRYSLER FORD GM NULL OTHER

 23399 12315 25314 5 11950

32/38

Linear regression: factors

fit_3 <- lm(VehOdo ~ factor(TopThreeAmericanName), data = cars)

summary(fit_3)

Call:
lm(formula = VehOdo ~ factor(TopThreeAmericanName), data = cars)

Residuals:
 Min 1Q Median 3Q Max

-71947 -9634 1532 10472 45936

Coefficients:

 Estimate Std. Error t value

(Intercept) 68248.48 92.98 733.984

factor(TopThreeAmericanName)FORD 8523.49 158.35 53.828

factor(TopThreeAmericanName)GM 4952.18 128.99 38.393

factor(TopThreeAmericanName)NULL -2004.68 6361.60 -0.315

factor(TopThreeAmericanName)OTHER 584.87 159.92 3.657

 Pr(>|t|)

(Intercept) < 0.0000000000000002 ***

factor(TopThreeAmericanName)FORD < 0.0000000000000002 ***

factor(TopThreeAmericanName)GM < 0.0000000000000002 ***

factor(TopThreeAmericanName)NULL 0.752670

factor(TopThreeAmericanName)OTHER 0.000255 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14220 on 72978 degrees of freedom

Multiple R-squared: 0.04822, Adjusted R-squared: 0.04817

F-statistic: 924.3 on 4 and 72978 DF, p-value: < 0.00000000000000022

33/38

Linear regression: retrieving information with broom package

tidy(fit_3)

A tibble: 5 x 5

 term estimate std.error statistic p.value

 <chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 68248. 93.0 734. 0

2 factor(TopThreeAmericanName)FORD 8523. 158. 53.8 0

3 factor(TopThreeAmericanName)GM 4952. 129. 38.4 2.74e-319

4 factor(TopThreeAmericanName)NULL -2005. 6362. -0.315 7.53e- 1

5 factor(TopThreeAmericanName)OTHER 585. 160. 3.66 2.55e- 4

34/38

Generalized Linear Models (GLMs)

Generalized Linear Models (GLMs) allow for fitting regressions for non-
continuous/normal outcomes. Examples include: logistic regression, Poisson
regression.

We fit GLM with a glm() function that has a very similar syntax to the lm()
function.

The primary difference is in glm(), we additionally specify the family argument
– a description of the error distribution and link function to be used in the
model. These include:

See ?family documentation for details of family functions.

binomial(link = "logit")

poisson(link = "log"), and other.

·

·

35/38

Logistic regression
IsBadBuy is a 0/1-valued variable stating “if the kicked vehicle was an avoidable purchase”.

glm_fit <- glm(IsBadBuy ~ VehOdo + VehicleAge, data = cars, family = binomial())

summary(glm_fit)

Call:
glm(formula = IsBadBuy ~ VehOdo + VehicleAge, family = binomial(),

 data = cars)

Deviance Residuals:

 Min 1Q Median 3Q Max

-0.9943 -0.5481 -0.4534 -0.3783 2.6318

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.7782285193 0.0638091954 -59.211 <0.0000000000000002 ***

VehOdo 0.0000083410 0.0000008526 9.783 <0.0000000000000002 ***

VehicleAge 0.2681085873 0.0067722363 39.589 <0.0000000000000002 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 54421 on 72982 degrees of freedom

Residual deviance: 52346 on 72980 degrees of freedom

AIC: 52352

Number of Fisher Scoring iterations: 5

36/38

Final note

Some final notes:

Researcher’s responsibility to understand the statistical method they use –
underlying assumptions, correct interpretation of method results

Researcher’s responsibility to understand the R software they use – meaning
of function’s arguments and meaning of function’s output elements

·

·

37/38

Lab Part 3

Website

38/38

http://jhudatascience.org/intro_to_R_class/index.html

