The ungroup
function will allow you to clear the groups from the data. You can also overwrite the first group_by
with a new one.
yts = ungroup(yts)
yts
# A tibble: 9,794 x 31
YEAR LocationAbbr LocationDesc TopicType TopicDesc MeasureDesc DataSource
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2015 AZ Arizona Tobacco U… Cessation… Percent of … YTS
2 2015 AZ Arizona Tobacco U… Cessation… Percent of … YTS
3 2015 AZ Arizona Tobacco U… Cessation… Percent of … YTS
4 2015 AZ Arizona Tobacco U… Cessation… Quit Attemp… YTS
5 2015 AZ Arizona Tobacco U… Cessation… Quit Attemp… YTS
6 2015 AZ Arizona Tobacco U… Cessation… Quit Attemp… YTS
7 2015 AZ Arizona Tobacco U… Cigarette… Smoking Sta… YTS
8 2015 AZ Arizona Tobacco U… Cigarette… Smoking Sta… YTS
9 2015 AZ Arizona Tobacco U… Cigarette… Smoking Sta… YTS
10 2015 AZ Arizona Tobacco U… Cigarette… Smoking Sta… YTS
# … with 9,784 more rows, and 24 more variables: Response <chr>,
# Data_Value_Unit <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# Data_Value_Std_Err <dbl>, Low_Confidence_Limit <dbl>,
# High_Confidence_Limit <dbl>, Sample_Size <dbl>, Gender <chr>, Race <chr>,
# Age <chr>, Education <chr>, GeoLocation <chr>, TopicTypeId <chr>,
# TopicId <chr>, MeasureId <chr>, StratificationID1 <chr>,
# StratificationID2 <chr>, StratificationID3 <chr>, StratificationID4 <chr>,
# SubMeasureID <chr>, DisplayOrder <dbl>