
Data Input/Output

Outline

Part 0: A little bit of set up!

Part 1: reading CSV file, common new user mistakes in data reading, checking
for problems in the read data

Part 2: data input overview, working directories, relative vs. absolute paths,
reading XLSX file (Excel file), other data inputs

Part 3: writing CSV file

Part 4: reading and saving R objects

·

·

·

·

·

2/37

New R Project

Let’s make an R Project so we can stay organized in the next steps.

Click the new R Project button at the top left of RStudio:

3/37

New R Project

In the New Project Wizard, click “New Directory”:

4/37

New R Project

Click “New Project”:

5/37

New R Project

Type in a name for your new folder.

Store it somewhere easy to find, such as your Desktop:

6/37

New R Project

You now have a new R Project folder on your Desktop!

Make sure you add any scripts or data files to this folder as we go through
today’s lesson. This will make sure R is able to “find” your files.

7/37

Data We Use

Everything we do in class will be using real publicly available data - there are
few ‘toy’ example datasets and ‘simulated’ data

Baltimore Open Data and Data.gov will be sources for the first few days

We have also added functionality to load these datasets directly in the jhur
package

·

·

·

8/37

Data Input

‘Reading in’ data is the first step of any real project/analysis

R can read almost any file format, especially via add-on packages

We are going to focus on simple delimited files first

·

·

·

comma separated (e.g. ‘.csv’)

tab delimited (e.g. ‘.txt’)

Microsoft Excel (e.g. ‘.xlsx’)

-

-

-

9/37

Data Input

Youth Tobacco Survey (YTS) dataset:

“The YTS was developed to provide states with comprehensive data on both
middle school and high school students regarding tobacco use, exposure to
environmental tobacco smoke, smoking cessation, school curriculum, minors’
ability to purchase or otherwise obtain tobacco products, knowledge and
attitudes about tobacco, and familiarity with pro-tobacco and anti-tobacco media
messages.”

Check out the data at: https://catalog.data.gov/dataset/youth-tobacco-survey-
yts-data

·

10/37

https://catalog.data.gov/dataset/youth-tobacco-survey-yts-data

Data Input: Dataset Location

Dataset is located at
http://jhudatascience.org/intro_to_R_class/data/Youth_Tobacco_Survey_YTS_Data.csv

Download data by clicking the above link·

Safari - if a file loads in your browser, choose File –> Save As, select,
Format “Page Source” and save

-

11/37

http://jhudatascience.org/intro_to_R_class/data/Youth_Tobacco_Survey_YTS_Data.csv

Data Input: Read in Directly

load library `readr` that contains function `read_csv`

library(readr)
dat <- read_csv("http://jhudatascience.org/intro_to_R_class/data/Youth_Tobacco_Survey_YTS_Data.

`head` displays first few rows of a data frame

head(dat, 5)

A tibble: 5 x 31

 YEAR LocationAbbr LocationDesc TopicType TopicDesc MeasureDesc DataSource

 <dbl> <chr> <chr> <chr> <chr> <chr> <chr>

1 2015 AZ Arizona Tobacco U… Cessation… Percent of C… YTS

2 2015 AZ Arizona Tobacco U… Cessation… Percent of C… YTS

3 2015 AZ Arizona Tobacco U… Cessation… Percent of C… YTS

4 2015 AZ Arizona Tobacco U… Cessation… Quit Attempt… YTS

5 2015 AZ Arizona Tobacco U… Cessation… Quit Attempt… YTS

… with 24 more variables: Response <chr>, Data_Value_Unit <chr>,

Data_Value_Type <chr>, Data_Value <dbl>, Data_Value_Footnote_Symbol <chr>,

Data_Value_Footnote <chr>, Data_Value_Std_Err <dbl>,

Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>, Sample_Size <dbl>,

Gender <chr>, Race <chr>, Age <chr>, Education <chr>, GeoLocation <chr>,

TopicTypeId <chr>, TopicId <chr>, MeasureId <chr>, StratificationID1 <chr>,

StratificationID2 <chr>, StratificationID3 <chr>, StratificationID4 <chr>,

SubMeasureID <chr>, DisplayOrder <dbl>

12/37

Data Input: Read in Directly

So what is going on “behind the scenes”?

read_csv() parses a “flat” text file (.csv) and turns it into a tibble – a rectangular
data frame, where data are split into rows and columns

First, a flat file is parsed into a rectangular matrix of strings

Second, the type of each column is determined (heuristic-based guess)

·

·

13/37

Data Input: Read in Directly

read_csv() needs the path to your file. It will return a tibble

read_csv(file, col_names = TRUE, col_types = NULL,

 locale = default_locale(), na = c("", "NA"),

 quoted_na = TRUE, quote = "\"", comment = "", trim_ws = TRUE,

 skip = 0, n_max = Inf, guess_max = min(1000, n_max),

 progress = show_progress(), skip_empty_rows = TRUE

)

file is the path to your file, in quotes

can be path in your local computer – absolute file path or relative file path

can be path to a file on a website

·

·

·

Examples

dat <- read_csv("/Users/avahoffman/Downloads/Youth_Tobacco_Survey_YTS_Data.csv")

dat <- read_csv("Youth_Tobacco_Survey_YTS_Data.csv")

dat <- read_csv("www.someurl.com/table1.csv")

14/37

Data Input: Read in Directly

Great, but what is my “path”?

15/37

Data Input: Read in Directly

Luckily, we already set up an R Project!

If we add the Youth_Tobacco_Survey_YTS_Data.csv file to the intro_to_r_class
folder, we can use the relative path:

dat <- read_csv("Youth_Tobacco_Survey_YTS_Data.csv")

16/37

Data Input: Read in Directly

read_csv() is a special case of read_delim() – a general function to read a
delimited file into a data frame

read_delim() needs path to your file and fileds delimiter, will return a tibble

read_delim(file, delim, quote = "\"", escape_backslash = FALSE,

 escape_double = TRUE, col_names = TRUE, col_types = NULL,

 locale = default_locale(),na = c("", "NA"), quoted_na = TRUE,

 comment = "", trim_ws = FALSE, skip = 0,

 n_max = Inf, guess_max = min(1000, n_max),

 progress = show_progress(), skip_empty_rows = TRUE

)

file is the path to your file, in quotes

delim is what separates the fields within a record

·

·

Examples

dat <- read_delim("Youth_Tobacco_Survey_YTS_Data.csv", delim = ",")

dat <- read_delim("www.someurl.com/table1.txt", delim = "\t")

17/37

Data Input: Read in Directly From File Path

The data is now successfully read into your R workspace. Colum specification of
first few columns is printed to the console.

dat <- read_csv("../data/Youth_Tobacco_Survey_YTS_Data.csv")

── Column specification ──

cols(
 .default = col_character(),

 YEAR = col_double(),

 Data_Value = col_double(),

 Data_Value_Std_Err = col_double(),

 Low_Confidence_Limit = col_double(),

 High_Confidence_Limit = col_double(),

 Sample_Size = col_double(),

 DisplayOrder = col_double()

)
ℹ Use `spec()` for the full column specifications.

18/37

Common new user mistakes we have seen

1. Working directory problems: trying to read files that R “can’t find”

2. Typos (R is case sensitive, x and X are different)

3. Data type problems (is that a string or a number?)

4. Open ended quotes, parentheses, and brackets

5. Different versions of software

Path misspecification·

RStudio helps with “tab completion”·

19/37

Data Input: Checking for problems

The spec() function shows you the specification of how the data was read in.

dat <- read_csv("../data/Youth_Tobacco_Survey_YTS_Data.csv")

spec(dat)

cols(
 YEAR = col_double(),

 LocationAbbr = col_character(),

 LocationDesc = col_character(),

 TopicType = col_character(),

 TopicDesc = col_character(),

 MeasureDesc = col_character(),

 DataSource = col_character(),

 Response = col_character(),

 Data_Value_Unit = col_character(),

 Data_Value_Type = col_character(),

 Data_Value = col_double(),

 Data_Value_Footnote_Symbol = col_character(),

 Data_Value_Footnote = col_character(),

 Data_Value_Std_Err = col_double(),

 Low_Confidence_Limit = col_double(),

 High_Confidence_Limit = col_double(),

 Sample_Size = col_double(),

 Gender = col_character(),

 Race = col_character(),

 Age = col_character(),

 Education = col_character(),

 GeoLocation = col_character(),

 TopicTypeId = col_character(),
 20/37

Data Input: Checking for problems

The problems() function shows you if there were any obvious issues when the
data was read in.

The output of problems() is a tibble showing each line with a concern.

problems(dat)

[1] row col expected actual

<0 rows> (or 0-length row.names)

21/37

Data Input: Checking for problems

dat looks good so far. What do you see on a messy dataset?

ufo_data <- read_csv("https://github.com/SISBID/Data-Wrangling/blob/gh-pages/data/ufo/ufo_data_

problems(ufo_data)

A tibble: 73 x 5

 row col expected actual file

 <int> <chr> <chr> <chr> <chr>

 1 98 <NA> 1 columns 2 columns 'https://github.com/SISBID/Data-Wrangling/bl…

 2 106 <NA> 1 columns 353 colu… 'https://github.com/SISBID/Data-Wrangling/bl…

 3 107 <NA> 1 columns 2 columns 'https://github.com/SISBID/Data-Wrangling/bl…

 4 140 <NA> 1 columns 3 columns 'https://github.com/SISBID/Data-Wrangling/bl…

 5 150 <NA> 1 columns 6 columns 'https://github.com/SISBID/Data-Wrangling/bl…

 6 171 <NA> 1 columns 4 columns 'https://github.com/SISBID/Data-Wrangling/bl…

 7 176 <NA> 1 columns 10 colum… 'https://github.com/SISBID/Data-Wrangling/bl…

 8 180 <NA> 1 columns 10 colum… 'https://github.com/SISBID/Data-Wrangling/bl…

 9 184 <NA> 1 columns 10 colum… 'https://github.com/SISBID/Data-Wrangling/bl…

10 188 <NA> 1 columns 10 colum… 'https://github.com/SISBID/Data-Wrangling/bl…

… with 63 more rows

22/37

Data Input: Checking for problems

The stop_for_problems() function will stop if your data had any problem when
reading in (even if that problem did not cause the data reading to fail).

Particularly useful to put after the data reading code e.g. in some automated R
script that should not proceed in case some data “weirdness” occurred.

·

stop_for_problems(ufo_data)

Error: 73 parsing failures

23/37

Help

For any function, you can write ?FUNCTION_NAME, or help("FUNCTION_NAME") to
look at the help file:

?read_delim

help("read_delim")

24/37

Data Input: Read in From RStudio Toolbar

R Studio features some nice “drop-down” support, where you can run some tasks
by selecting them from the toolbar.

For example, you can easily import text datasets using the File --> Import
Dataset --> From Text (readr) command. Selecting this will bring up a new
screen that lets you specify the formatting of your text file.

After importing a datatset, you get (printed in the R console) the corresponding R
command that you can enter in the console if you want to re-import data.

25/37

Data Input: Read in From RStudio Toolbar

26/37

Data Input: base R

There are also data importing functions provided in base R (rather than the
readr package), like read.delim() and read.csv().

These functions have slightly different syntax for reading in data (e.g. header
argument).

However, while many online resources use the base R tools, the latest version of
RStudio switched to use these new readr data import tools, so we will use them
in the class for slides. They are also up to two times faster for reading in large
datasets, and have a progress bar which is nice.

27/37

Revision

Data importing functions provided in base R: read.delim(), read.csv()

Modern, improved tools from readr R package: read_delim(), read_csv()

Some functions to look at a data frame:

·

·

needs a file path to be provided

parses the file into rows/columns, determines column type

returns a data frame

-

-

-

·

head() shows first few rows

spec() gives specification of column types

-

-

28/37

Data input: other file types

From readr package:

For reading Excel files, you can do one of:

haven package has functions to read SAS, SPSS, Stata formats

sas7bdat has functions to read SAS formats

·

read_delim(): general delimited files

read_csv(): comma separated (CSV) files

read_tsv(): tab separated files

others

-

-

-

-

·

open in Excel, “Save as” a sheet as a .csv file, and open using read_csv()

use read_excel() function from readxl package

use other packages: xlsx, openxlsx

-

-

-

·

·

29/37

Lab Part 1

Lab file: http://jhudatascience.org/intro_to_r_class/Data_IO/lab/Data_IO_Lab.Rmd

Website

30/37

http://jhudatascience.org/intro_to_r_class/Data_IO/lab/Data_IO_Lab.Rmd
http://jhudatascience.org/intro_to_R_class/

Working Directories

Working directory is a directory that R assumes “you are working in”. It’s where R
looks for files.

“Setting working directory” means specifying the path to the directory.

R uses working directory as a starting place when searching for files.

get the working directory

getwd()

set the working directory

setwd("/Users/avahoffman/Desktop")

31/37

Working Directories

R uses working directory as a starting place when searching for files:

if you use read_csv("Bike_Lanes_Long.csv"), R assumes that the file is in
the working directory

if you use read_csv("data/Bike_Lanes_Long.csv"), R assumes that data
directory is in the working directory

if you use an absolute path,
e.g. read_csv("/Users/avahoffman/data/Bike_Lanes_Long.csv"), the
working directory information is not used

·

·

·

32/37

Working Directories

Setting up an R Project can avoid headaches by telling R that the working
directory is wherever the .Rproj file is.

33/37

Data Output

While its nice to be able to read in a variety of data formats, it’s equally
important to be able to output data somewhere.

The readr package provides data exporting functions which have the pattern
write_*:

From write_csv() documentation:

write_csv(),

write_delim(), others.

·

·

write_csv(x, file,

 na = "NA", append = FALSE,

 col_names = !append, quote_escape = "double",

 eol = "\n", path = deprecated()

)

34/37

Data Output

x: data frame you want to write

file: file path where you want to R object written; it can be:

an absolute path,

a relative path (relative to your working directory),

a file name only (which writes the file to your working directory)

·

·

·

Examples

write_csv(dat, file = "YouthTobacco_newNames.csv")

write_delim(dat, file = "YouthTobacco_newNames.csv", delim = ",")

35/37

R binary file

.rds is an extension for R native file format.

write_rds() and read_rds() from readr package can be used to write/read a
single R variable to/from file.

Saving datasets in .rds format can save time if you have to read it back in later.

write a variable: a data frame "dat"

write_rds(dat, file = "yts_dataset.rds")

write a variable: vector "x"

x <- c(1,3,3)
write_rds(x, file = "my_vector.rds")

read a variable from file and assign to a new variable named "y"

x2 <- read_rds("my_vector.rds")

x2

[1] 1 3 3

36/37

Lab Part 2

Lab file: http://jhudatascience.org/intro_to_r_class/Data_IO/lab/Data_IO_Lab.Rmd

Website

37/37

http://jhudatascience.org/intro_to_r_class/Data_IO/lab/Data_IO_Lab.Rmd
http://jhudatascience.org/intro_to_R_class/

