Intro to

Data Cleaning

In general, data cleaning is a process of investigating your
data for inaccuracies, or recoding it in a way that makes it
more manageable.

L, MOST IMPORTANT RULE - LOOK ®» AT YOUR DATA! A

2/74

Dealing with Missing Data

Missing data types

One of the most important aspects of data cleaning is missing values.
Types of “missing” data:

+ NA - general missing data

+ NaN - stands for “Not a Number”, happens when you do 0/0.

+ Inf and -1Inf - Infinity, happens when you take a positive number (or negative
number) by 0.

4/74

Finding Missing data

Each missing data type has a function that returns TRUE if the data is missing:

* NA-1i1s.na
* NaN - is.nan

Inf and -Inf-is.infinite

5/74

Useful checking functions

- is.na - iS TRUE if the data is FALSE otherwise
! - negation (NOT)
- ifis.na(x) IS TRUE, then !'is.na (x) IS FALSE

- any Will be TRUE if ANY are true

- any(is.na(x)) - do we have any Na's in x?

A =c(l, 2, 4, NA)
BE— C(l/ 2/ 3/ 4)
any(is.na(A)) # are there any NAs - YES/TRUE

[1] TRUE

any(is.na(B)) # are there any NAs- NO/FALSE

[1] FALSE

6/74

naniar

Sometimes you need to look at lots of data though... the naniar package is a
good option.

The pct complete () function shows the percentage that is complete for a given
data object.

#install.packages ("naniar")
library (naniar)

x =c¢(0, NpA, 2, 3, 4, -0.5, 0.2)
naniar::pct complete (x)

[1] 85.71429

7174

https://cran.r-project.org/web/packages/naniar/vignettes/getting-started-w-naniar.html

Air quality data

The airquality dataset comes with R about air quality in New York in 1973.

?airquality # use this to find out more about the data

airqual <-tibble(airquality)
alrqual

A tibble:

O WO -JoYuUrTkdWNE

+H=

<int>
41
36
12
18
NA
28
23
19
8
NA

153 x 6
Ozone Solar.R Wind
<int> <dbl>

190
118
149
313
NA
NA
299
99
19
194

.. with 143 more

7.

8

12.
11.
14.
14.

8.
13.
20.

8.

4

oY O oY WO W U o

rows

Temp Month
<int> <int>

67
72
74
62
56
66
65
59
61
69

o1 O1 O1 U1 U1 O 01 U1 U1 Ul

Day
<int>

|_\

OWO~-JouUuldkdwdNdRE

8/74

naniar: pct complete ()

pct complete (airquality)

[1] 95.20697

9/74

Naniar plots

The gg miss wvar () function creates a nice plot about the number of missing

values for each variable.

naniar::gg miss var (airqual)

[]

Ozone

[]

Solar.R

» Wind L]

Q

o)

.©

-

©

> Temp]
Month L

Day L

0 10 20
Missing

30

10/74

Naniar plots

We can use the facet argument to make more plots about a specific variable.

naniar::gg miss var (airqual, facet = Month)

5 6 7
Ozone —@ 0 0
SolarR —e L) °
Wind e [°
Temp e L)]
» Day e ° L)
<
o
0 5 10 15
3 8 9
©
> Ozone —o -
SolarR —e L]
Wind e)
Temp e L)
Day e °
0 5 10 15 20 0 5 10 15 20
Missing

20

11/74

Missing Data Issues

Recall that mathematical operations with Na often result in NAs.

sum(c(1l,2,3,NA))

[1] NA
mean (c (2,4,NA))

[1] NA
median(c(1l,2,3,NA))

[1] NA

12/74

Missing Data Issues

This is also true for logicals. This is a good thing. The NA data could be > 2 or
not, we don't know, so R says there is N0 TRUE or FALSE, SO that is missing.

(0, NA, 2, 3, 4, -0.5, 0.2)

X ©
X 2

Vol

[1] FALSE NA FALSE TRUE TRUE FALSE FALSE

13/74

filter() and missing data

Be careful with missing data using subsetting:

filter () removes missing values by default. To keep them need to add
is.na():

X # looks like the 1st and 3rd element should be TRUE
[1] 0.0 NA 2.0 3.0 4.0 -0.5 0.2

x %in% c(0, 2) # uh oh - not good!

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE

X %in% c(0, 2) | is.na(x) # do this

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE

14/74

filter() and missing data

A tibble: 6 x 2

Dog Cat
<dbl> <dbl>

1 0 NA
2 NA 8
3 2 6
4 3 NA
5 1 2
6 1 NA

df %>% filter (Dog < 3)

A tibble: 4 x 2

Dog Cat

<dbl> <dbl>

1 0 NA
2 2

3 1 2

4 1 NA

15/74

to remove rows with NAs for one variable use drop na ()

Avoid using filter for NA values. Instead use drop na ()

df %>% drop na (Dog)

A tibble: 5 x 2

Dog Cat
<dbl> <dbl>

1 0 NA
2 2 6
3 3 NA
- 1 2
5 1 NA

INAdoes not work as you might expect because you can't tell if
something is not actuallyNA- R doesn't ever assume to know what
the value ofNA is

NA == NA
[1] NA
NA = NA

16/74

tidyr::drop_na

This function will drop rows with any missing data in any column when used on

a df.

df

A tibble: 6 x 2

Dog Cat
<dbl> <dbl>
1 0 NA
2 NA 8
3 2 6
4 3 NA
5 1 2
6 1 NA
drop na (df)

A tibble: 2

Dog Cat
<dbl> <dbl>

1 2 6
2 1 2

X

17/74

Think about NA

Sometimes removing Na values leads to distorted math - be careful! Think about
what your NA means for your data (are you sure ?).

Is an Na for values so low they could not be reported? Or is it this and also if
there was a different issue?

18/74

Think about NA

If it is something more like a zero then you might want it included in your data
like a zero.

Example: - survey reports NA if student has never tried cigarettes - survey
reports 0 if student has tried cigarettes but did not smoke that week

You might want to keep the NA values so that you know the original sample size.

19/74

Word of caution

Calculating percentages will give you a different result depending on your choice
to include NA values.

red blue

A tibble: 3 x 2

color col count

<chr> <int>
1 blue 3
2 red 3
3 <NA> 3

red blue %$>% mutate (percent =

col count/sum(pull (red blue, col count)))

A tibble: 3 x 3

color col count percent

<chr> <int> <dbl>
1 blue 3 0.333
2 red 3 0.333
3 <NA> 3 0.333

20/74

Word of caution

red blue $>% mutate (percent =

col count/sum(pull (drop na(red blue), col count)))

A tibble: 3 x 3

color col count percent

<chr> <int> <dbl>
1 blue 3 0.5
2 red 3 0.5
3 <NA> 3 0.5

Should you be dividing by 9 or 6? It depends on your data
Pay attention to your data and your NAs!

21/74

Check values

Check the values for your variables, are they what you expect?

count () IS a great option because it gives tells you:

1. The unique values

2. the amount of these values

Check if rare values make sense
bike <-jhur::read bike ()
bike %>% count (subType)

A tibble: 4 x 2

subType n
<chr> <int>
STCLN 1
STRALY 3

STRPRD 1623
<NA> 4

Sw N

22/74

Lab Part 1
lab part 1

Website

23/74

http://jhudatascience.org/intro_to_R_class/Data_Cleaning/lab/Data_Cleaning_Lab.Rmd
http://jhudatascience.org/intro_to_R_class/index.html

Recoding Variables

Example of Recoding

Say we have some data about samples in a diet study:

data diet

A tibble:

© 00 10O Ul W N
WP ww oW ow

12 x 4

Diet Gender Weight start Weight change
<chr> <chr>

Male
m
Other
F
Female
M

f

<int>

139
105
203
160
102
233
151
183
118
189
132
104

<int>
-1
13
-9
-3
12
0
-6
11
-4
1
10
15

25/74

Oh dear...

This needs lots of recoding.

data diet
count (Gender, Diet)

Q (0]
5>%

A tibble: 10 x 3
Gender Diet n

|_\

O WO JoyurkdWwWwdNRE

<chr>
f

F

F
Female
m

M
Male
Man

O
Other

<chr> <int>

w0 ww >
R S N R e e e R el O

26/74

dplyr can help!

Using Excel to find all of the different ways gender has been coded, would be a

matter of filtering and changing all by hand or using if statements. This can be
hectic!

In dplyr you can use the recode function (need mutate here too!):

General Format - this 1is not code!
{data input} %>%
mutate ({variable to fix} = {Variable fixing, {old value} = {new value},
- {another old value} = {new value})

data diet %>%

mutate (Gender = recode (Gender, M = "Male",
m = "Male",
Man = "Male",
O = "Other",
f = "Female",
F = "Female")) %>%

count (Gender, Diet)

27174

Or you can use case when().

The case when () function of dplyr can help us to do this as well.

General Format - this is not code!
{data input} %>%
mutate ({variable to fix} = case when{Variable fixing}condition

~ {value for cond}))

Note that automatically values not reassigned explicitly by case_when will be Na.

28/74

Use of case when ()

data diet %>%
mutate (Gender = case when (Gender =="M" ~ "Male"))

A tibble: 12 x 4
Diet Gender Weight start Weight change

<chr> <chr> <int> <int>

1 A <NA> 139 -1

2 B <NA> 105 13

3B <NA> 203 -9

4 A <NA> 160 -3

5B <NA> 102 12

6 B Male 233 0

7 A <NA> 151 -6

8 B <NA> 183 11

9 B <NA> 118 -4

10 A <NA> 189 1
11 B <NA> 132 10
12 B <NA> 104 15

29/74

More complicated case_when()

data diet %>%
mutate (Gender = case when(
Gender %in% c("M", "male", "Man", "m", "Male") ~ "Male",
Gender %in% c("F", "Female", "f", "female")~ "Female",
Gender %in% c("O", "Other") ~ "Other"))

A tibble: 12 x 4
Diet Gender Weight start Weight change

<chr> <chr> <int> <int>

1 A Male 139 -1

2 B Male 105 13

3B Other 203 -9

4 A Female 160 -3

5 B Female 102 12

6 B Male 233 0

7 A Female 151 -6

8 B Other 183 11

9 B Male 118 -4

10 A Female 189 1
11 B Female 132 10
12 B Other 104 15

30/74

Another reason for case_when ()

case when can do very sophisticated comparisons

data diet <-data diet 3%>%
" mutate (Effect = case when (Weight change > 0 ~ "Increase",
Weight change == 0 ~ "Same",
Weight change < 0 ~ "Decrease"))

head (data diet)

A tibble: 6 x 5
Diet Gender Weight start Weight change Effect

<chr> <chr> <int> <int> <chr>
1 A Male 139 -1 Decrease
2 B m 105 13 Increase
3B Other 203 -9 Decrease
4 A F 160 -3 Decrease
5B Female 102 12 Increase
6 B M 233 0 Same
A tibble: 5 x 3

Diet Effect n

<chr> <chr> <int>
1 A Decrease 3
2 A Increase 1
3B Decrease 2
4 B Increase o)
5 B Same 1

31/74

What if our data looked like this?

diet comb

A tibble:
change
<chr>

1 A Decrease

2 A Increase

3 B Decrease

4 B Increase

5 B Same

n
<int>

R O W

32/74

Separating columns based on a separator

From tidyr, you can split a data set into multiple columns:

diet comb %>%

i

O W

separate (change, into

A tibble: 5 x 3
Diet Change
<chr> <chr>

A Decrease
A Increase
B Decrease
B Increase
B Same

n
<int>

= O W

c("Diet", "Change"))

33/74

Separating columns based on a separator

You can specify the separator with sep.

diet comb

i

O W

Q (0]
5>%

separate (change, into

A tibble: 5 x 3

Diet

<chr>
A diet
A diet
B diet
B diet
B diet

Change
<chr>
Decrease
Increase
Decrease
Increase
Same

n
<int>

R O W

c("Diet",

"Change"),

sep = " n)

34/74

Uniting columns based on a separator

From tidyr, you can unite:

df = tibble(id = rep(1l:5, 3), visit = rep(l:3, each = 5))

head (df, 4)
A tibble: 4 x 2
id visit

<int> <int>
1 1 1
2 2 1
3 3 1
4 4 1
df united <- df %>% unite(col = "unique 1id", 1id, visit, sep =" ")

head (df united, 4)

A tibble: 4 x 1
unique id

35/74

Strings functions

Splitting/Find/Replace and Regular Expressions

+ R can do much more than find exact matches for a whole string!

37/74

The stringr package
The stringr package:

Modifying or finding part or all of a character string
- We will not cover grep or gsub - base R functions

- are used on forums for answers

+ Almost all functions start with str *

38/74

stringr

str detect,and str replace search for matches to argument pattern within
each element of a character vector (not data frame or tibblel).

str detect - returns TRUE if pattern is found

str replace - replaces pattern with replacement

39/74

Download Salary FY2014 Data

From https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-
Salaries-FY2015/nsfe-bg53, from https://data.baltimorecity.gov/api/views/nsfe-
bg53/rows.csv

Read the CSV into R sal:
Sal = jhur::read salaries() # or

head (Sal)

A tibble: 6 x 7

name JobTitle AgencyID Agency HireDate AnnualSalary Grossl

<chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 Aaron,Patricia G Faciliti.. A03031 OED-Em... 10/24/1... $55314.00 S5362¢
2 Aaron,Petra L ASSISTAN.. A29045 States.. 09/25/2.. $74000.00 $7300(
3 Abaineh, Yohannes T EPIDEMIO... A65026 HLTH-H.. 07/23/2... $64500.00 $6440:
4 Abbene, Anthony M POLICE O.. A99005 Police.. 07/24/2.. $46309.00 $5962(
5 Abbey, Emmanuel CONTRACT... 240001 M-R In.. 05/01/2.. $60060.00 $5405¢
6 Abbott-Cole,Michelle CONTRACT.. A90005 TRANS-.. 11/28/2.. $42702.00 $2025(

40/74

https://data.baltimorecity.gov/City-Government/Baltimore-City-Employee-Salaries-FY2015/nsfe-bg53
https://data.baltimorecity.gov/api/views/nsfe-bg53/rows.csv

Find'str_detect () function: finding values: stringr

Sal %$>% filter (str detect (name, "Rawlings"))

A tibble: 3 x 7
name JobTitle
<chr> <chr>
1 Rawlings,Ke.. EMERGENCY D..
2 Rawlings, Pa.. COMMUNITY A..
3 Rawlings-Bl.. MAYOR

AgencylD Agency

<chr>

A40302
AQ04015
A01001

<chr>

M-R Info Te..
R&P—-Recreat...
Mayors Offi..

HireDate AnnualSalary Grossl
<chr> <chr> <chr>
01/06/2.. $48940.00 $7335¢
12/10/2... $19802.00 $1044:
12/07/1... $167449.00 $1652¢

41/74

Showing differnce in str_replace and str_replace all

str replace replaces only the first instance.

head (pull (Sal, JobTitle))

[1] "Facilities/Office Services II" "ASSISTANT STATE'S ATTORNEY"
[3] "EPIDEMIOLOGIST" "POLICE OFFICER"
[5] "CONTRACT SERV SPEC II" "CONTRACT SERV SPEC II"

head (str replace(pull (Sal, JobTitle), "II", "2"))

[1] "Facilities/Office Services 2" "ASSISTANT STATE'S ATTORNEY"
[3] "EPIDEMIOLOGIST" "POLICE OFFICER"
[5] "CONTRACT SERV SPEC 2" "CONTRACT SERV SPEC 2"

str replace replaces all instances.

head (str replace all(pull(Sal, name), "a", "3"), 2)

[1] "Ajron,Pjtricij G" "Ajron,Petrj L"

42/74

Lab Part 2
lab part 2

Website

43/74

http://jhudatascience.org/intro_to_R_class/Data_Cleaning/lab/Data_Cleaning_Lab.Rmd
http://jhudatascience.org/intro_to_R_class/index.html

Extra Slides

String Splitting

str split(string, pattern) -splits strings up - returns list!

library (stringr)

X <= ¢c("I really like writing R code")

df = tibble(x = c("I really", "like writing", "R code programs"))
y <- unlist(str split(x, " "))

Y

[1] "I" "really" "like" "writing" "R" "code"
length (y)

[1] 6

45/74

A bit on Regular Expressions

http://www.regular-expressions.info/reference.html
+ They can use to match a large number of strings in one statement

. matches any single character

* means repeat as many (even if 0) more times the last character
? makes the last thing optional

~ matches start of vector ~a - starts with “a”

s matches end of vector bs$ - ends with “b”

46/74

http://www.regular-expressions.info/reference.html

Let's look at modifiers for stringr

?modifiers

fixed - match everything exactly

ignore case iS an option to not have to use tolower

47174

Using a fixed expression

One example case is when you want to split on a period “.”. In regular
expressions . means ANY character, so we need to specify that we want R to

“Hn

interpret “." as simply a period.

str split("I.like.strings", ".")

[[11]
1

[:| mww mww mww mww mww mwiw mww mww mww mww mww mww mww mww mww
str split("I.like.strings", fixed("."))

[[11]
[l] nwn "] {ike" "Strings"

str split("I.like.strings", "\\.")

[[11]
[l] nwn "] {ike" "Strings"

48/74

Pasting strings with paste and paste0

Paste can be very useful for joining vectors together:

paste ("Visit", 1:5, sep =" ")
[1] "Visit 1" "Visit 2" "Visit 3" "Visit 4" "Visit 5"
paste ("Visit", 1:5, sep =" ", collapse = " ")

[1] "Visit 1 Visit 2 Visit 3 Visit 4 Visit 5"

and pastel can be even simpler see ?pastel
pastel ("Visit",1:5) # no space!

[1] "Visitl" "Visit2" "Visit3" "Visit4" "Visit5"
|- # Before Cleaning - Subsetting with Brackets ->

->

> > >

49/74

Using Regular Expressions

Look for any name that starts with:
- Payne at the beginning,
- Leonard and thenan S

- Spence then capital C

head (str subset (Sal$name, "“Payne.*"), 3)

[1] "Payne El,Boaz L" "Payne El1,Jackie"
[3] "Payne Johnson,Nickole A"

head (str subset (Sal$name, "Leonard.?S"))
[1] "Payne,Leonard S" "Szumlanski, Leonard S"
head (str subset (Sal$name, "Spence.*C.*"))

[1] "Spencer,Charles A" "Spencer,Clarence W" "Spencer,Michael C"

50/74

Comparison of to base R -
not covered

Splitting Strings

Substringing

stringr

str split(string, pattern) -splitsstrings up - returns list!

53/74

Splitting String:

In stringr, str split splits avector on a stringintoa list

X <= ¢c("I really", "like writing", "R code programs")

y <- stringr::str split(x, pattern = " ") # returns a list
Y

[[1]]

[l] nTn Hreallyn

[[2]]

[1] "like" "writing"

[[31]

[l] nRn "code" "programs"

54/74

str_extract

str_ extract extracts matched strings - \\d searches for DIGITS/numbers

head (Sal$AgencyID)

[1] "AQ3031™ "A29045™ "A65026" "A99005"™ "A40001"™ "AS0005"

head (str extract (Sal$AgencyID, "\\d"))

[l] "O" "2" "6" "9" "4" "9"

55/74

‘Find’ functions: stringr compared to base R

Base R does not use these functions. Here is a “translator” of the stringr
function to base R functions

str detect - similar to grepl (return logical)

* grep(value = FALSE) is similar to which (str detect())
str subset - similar to grep (value = TRUE) - return value of matched
str replace - Similar to sub - replace one time

str replace all -similar to gsub - replace many times

56/74

Important Comparisons

Base R:

- Argument order is (pattern, x)

Uses option (fixed = TRUE)
stringr

- Argument order is (string, pattern) aka (x, pattern)

Uses function fixed (pattern)

57174

‘Find’ functions: Finding Indices

These are the indices where the pattern match occurs:

grep ("Rawlings", SalSName)

Warning: Unknown or uninitialised column: "Name .

integer (0)

which (grepl ("Rawlings", SalS$SName))

Warning: Unknown or uninitialised column: "Name .

integer (0)

which (str detect (SalSName, "Rawlings"))

Warning: Unknown or uninitialised column: "Name .

integer (0)

58/74

‘Find’ functions: Finding Logicals

These are the indices where the pattern match occurs:

head (grepl ("Rawlings", Sal$Name))

Warning: Unknown or uninitialised column: "Name .

logical (0)

head (str detect (SalSName, "Rawlings"))

Warning: Unknown or uninitialised column: "Name .

logical (0)

59/74

‘Find’ functions: finding values, base R

grep ("Rawlings", SalSName, value=TRUE)

Warning: Unknown or uninitialised column: "Name .
character (0)

Sal[grep ("Rawlings", Sal$Name),]

Warning: Unknown or uninitialised column: "Name .
A tibble: 0 x 7

.. with 7 variables: name <chr>, JobTitle <chr>, AgencyID <chr>, Agency <chr>
i HireDate <chr>, AnnualSalary <chr>, GrossPay <chr>

60/74

Showing differnce in str_extract

str extract extracts just the matched string

ss = str extract (Sal$Name, "Rawling")

Warning: Unknown or uninitialised column: "Name .
head (ss)

character (0)

ss[!is.na(ss)]

character (0)

61/74

Showing differnce in str_extract and str_extract all

str extract all extracts all the matched strings

head (str extract (Sal$AgencyID, "\\d"))
[l] "O" "2" "6" "9" "4" "9"

head (str extract all(Sal$AgencyID, "\\d"), 2)

[[11]
[l] "O" "3" HO" "3" "l"

[

[2]]
[1]

"2" "9" "O" "4" "5"

62/74

Using Regular Expressions

Look for any name that starts with:
- Payne at the beginning,
- Leonard and thenan S

- Spence then capital C

head (grep (""Payne.*", x = Sal$name, value = TRUE), 3)

[1] "Payne El,Boaz L" "Payne El1,Jackie"
[3] "Payne Johnson,Nickole A"

head (grep ("Leonard.?3", x = SalSname, value = TRUE))
[1] "Payne,Leonard S" "Szumlanski, Leonard S"

head (grep ("Spence.*C.*", x = SalSname, value = TRUE))

[1] "Spencer,Charles A"

"Spencer,Clarence W" "Spencer,Michael C"

63/74

Using Regular Expressions: stringr

head (str subset (Sal$name, "“Payne.*"), 3)

[1] "Payne El,Boaz L" "Payne El1,Jackie"
[3] "Payne Johnson,Nickole A"

head (str subset (SalS$name, "Leonard.?S"))
[1] "Payne,Leonard S" "Szumlanski, Leonard S"
head (str subset (Sal$name, "Spence.*C.*"))

[1] "Spencer,Charles A" "Spencer,Clarence W" "Spencer,Michael C"

64/74

Replace

Let's say we wanted to sort the data set by Annual Salary:

class (SalSAnnualSalary)

[1] "character"

sort (c("1", "2", "10")) # not sort correctly (order simply ranks the data)
(1] "1" "1Q0"™ "2"

order (c("1", "2", "10"))

[1] 1 3 2

65/74

Replace

So we must change the annual pay into a numeric:

head (Sal$AnnualSalary, 4)

[1] "$55314.00" "$74000.00™ "$64500.00™ "$46309.00"

head (as.numeric (Sal$AnnualSalary), 4)

Warning in head(as.numeric (Sal$AnnualSalary), 4): NAs introduced by coercion

[1] NA NA NA NA

R didn't like the s so it thought turned them all to Na.

sub () and gsub () can do the replacing partin base R.

66/74

Replacing and subbing

Now we can replace the $ with nothing (used fixed=TRUE because $ means
ending):

Sal$AnnualSalary <- as.numeric (gsub (pattern = "$", replacement="",
Sal$AnnualSalary, fixed=TRUE))

Sal <- Sal[order (SalSAnnualSalary, decreasing=TRUE),]

Sal[l:5, c("name", "AnnualSalary", "JobTitle")]

A tibble: 5 x 3

name AnnualSalary JobTitle

<chr> <dbl> <chr>
1 Mosby,Marilyn J 238772 STATE'S ATTORNEY
2 Batts,Anthony W 211785 Police Commissioner
3 Wen, Leana 200000 Executive Director III
4 Raymond,Henry J 192500 Executive Director III
5 Swift,Michael 187200 CONTRACT SERV SPEC II

67/74

Replacing and subbing: stringr

We can do the same thing (with 2 piping operations!) in dplyr

dplyr sal = Sal
dplyr sal = dplyr sal $>% mutate (
AnnualSalary = AnnualSalary %>%
str replace (
fixed ("S"),
" n) %>%
as.numeric) %>%
arrange (desc (AnnualSalary))
check Sal = Sal
rownames (check Sal) = NULL
all.equal (check Sal, dplyr sal)

[1] TRUE

68/74

Website
Website

69/74

http://127.0.0.1:5741/index.html

Extra slides

Creating Two-way Tables

A two-way table. If you pass in 2 vectors, table creates a 2-dimensional table.

tab <- table (c (0,
c (0,
useNA

tab

A WN RE O
cloNoNoN o)

oo or

OQOMNOON

O OO O W

O ONOO N

OO OO oV

"always"

71/74

Creating Two-way Tables

tab_df = tibble(x = c(0, 1, 2,
Y = c(0, 1, 2, 3,
tab df %>% count(x, y)

3, 2,4
2, Iy
A tibble: 5 x 3

X % n
<dbl> <dbl> <int>

O W
wbhhdDDE O
Wik PP O
SN -

72174

Creating Two-way Tables

tab df 3>%
(

count (x, y) %>%
group by (x) %>% mutate(pct x = n / sum(n))
A tibble: 5 x 4
Groups: x [4]
X Yy n pct x
<dbl> <dbl> <int> <dbl>
1 0 0 1 1
2 1 1 1 1
3 2 2 2 0.5
4 2 4 2 0.5
5 3 3 4 1

73174

Creating Two-way Tables

library(scales)
tab df %>%

count (x, y) %>%
group by (x) %>% mutate(pct x = percent(n / sum(n)))
A tibble: 5 x 4
Groups: x [4]
X Yy n pct x
<dbl> <dbl> <int> <chr>
1 0 0 1 100%
2 1 1 1 100%
3 2 2 2 50%
4 2 4 2 50%
5 3 3 4 100%

74174

