Intro to

One dimensional types (“vectors”)

Data Types

Character: strings or individual characters, quoted
Numeric: any real number (s)

Integer: any integer (s)/whole numbers

Factor: categorical/qualitative variables

Logical: variables composed of TRUE or FALSE
Date/POSIXct: represents calendar dates and times

X% X X % o

3/39

Character and numeric

We have already covered character and numeric types.

class(c("tree", "cloud", "stars & sky"))

[1] "character"

[1] "numeric"

4/39

Character and numeric

This can also be a bit tricky.

class(c(1l, 2, "tree™))
[1] "character"
ClaSS(C("l"’ "4"’ "7"))

[1] "character"

5/39

Numeric Subclasses

There are two major numeric subclasses

1. Integer
2. Double

6/39

Integer

Integer iS a special subset of numeric that contains only whole numbers

A sequence of numbers is an example of the integer type. You can use the seq()

function to create a sequence of integers.

X
X

[1] 1 2 3 45

[1] 1 2 3 4 5
class (x)

[1] "integer"
typeof (x)

[1] "integer"

7/39

Double

Double is a special subset of numeric that contains fractional values.

Double stands for double-precision

y =c¢(l.1, 2.0, 3.2, 4.5, 5.06)

[1] 1.1 2.0 3.2 4.5 5.0
class (y)

[1] "numeric"

typeof (y)

[1] "double"

8/39

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Checking double vs integar

A tibble will show the difference (as does glimpse ())

i
iia
iia
iia
iia
iia
iia

tibble (xvar = x,
A tibble: 5 x 2
xXvar yvar
<int> <dbl>
1 1 1.1
2 2 2
3 3 3.2
4 4 4.5
5 5 5.6

iia

yvar = y)

9/39

Logical

logical is a type that only has two possible elements: TRUE and FALSE

x = c(TRUE, FALSE, TRUE, TRUE, FALSE)
class (x)

[1] "logical"

Note that 1ogical elements are NOT in quotes.

z = c("TRUE", "FALSE", "TRUE", "FALSE")
class (z)

[1] "character"

10/39

General Class Information

There are two useful functions associated with practically all R classes:

is.CLASS NAME (x) to logically check whether or not x is of certain class

as.CLASS NAME (x) to coerce between classes x from current x class into a
certain class

11/39

General Class Information: Checking
is.character(c (1, 4, 7))

[1] FALSE

is.numeric(c (1, 4, 7))

[1] TRUE

is.character (c("tree", "cloud"))

[1] TRUE

is.numeric (c("tree", "cloud"))

[1l] FALSE

12/39

General Class Information: coercing

In some cases the coercing is seamless

as.character(c (1, 4, 7))

[1] "1m 4w mv

as.numeric(c("1", "4", "7"))

[1] 1 4 7

as.logical (c("TRUE", "FALSE", "FALSE"))
[1] TRUE FALSE FALSE
as.integer(c(1.2, 3.7))

[1] 1 3

as.double(c (1, 2, 3))

[1] 1 2 3

13/39

General Class Information: coercing

In some cases the coercing is not possible; if executed, will return Na (an R
constant representing “Not Available” i.e. missing value)

as.numeric(c("1",

i
i
as
i

as

iia

"4"
4

"7a"))

Warning: NAs introduced by coercion

[1]

.logical (c ("TRUE",

[1]

1 4 NA

TRUE FALSE

"FALSE", "UNKNOWN"))

NA

.Date (c ("2021-06-15",

[1]

"2021-06-15"

NA

"2021-06-32"))

14/39

Factors

A factor is a special character vector where the elements have pre-defined

groups or ‘levels’. You can think of these as qualitative or categorical variables.
Use the factor () function to create factors.

x <= c¢("small", "mediam", "large", "medium", "large")
class (x)

[1] "character"

x fact = factor(x) # factor() is a function
class (x fact)

[1] "factor"
x fact

[1] small mediam large medium large
Levels: large mediam medium small

Note that levels are, by default, in alphanumerical order!

15/39

Factors

You can learn what are the unique levels of a factor vector

levels (x fact)

[1] "large" '"mediam" "medium" "small"

More on how to change the levels ordering in a lecture coming up!

16/39

Factors

Factors can be converted to numeric Or character very easily

x fact
i [1]
i
as
i [1]
as

i

small mediam large

medium large

Levels: large mediam medium small

.Ccharacter (x fact)

"small"

"mediam" "large"

.numeric (x fact)

[1]

4 21 31

"medium" "large"

17/39

Useful functions to create vectors

For character: rep () can create very long vectors.

The each argument specifies how many of each item you want repeated. The
times argument specifies how many times you want the vector repeated.

rep (c("black", "white"), each = 3)

[1] "black" "black" "black" "white" "white" "white"
rep (c("black", "white"), times = 3)

[1] "black" "white" "black" "white" "black" "white"
rep (c("black", "white"), each = 2, times = 2)

[1] "black" "black" "white" "white" "black" "black" "white" "white"

18/39

Useful functions to create vectors

For numeric: seq () can be very useful. The from argument says what number to
start on. The to argument says what number to not go above. The by argument
says how much to increment by. The 1ength.out argument says how long the
vector should be overall.

seqg(from = 0, to =1, by = 0.2)
[1] 0.0 0.2 0.4 0.0 0.8 1.0
seqg(from = -5, to = 5, length.out = 10)

[1] -5.0000000 -3.8888889 -2.7777778 -1.6666667 -0.5555556 0.5555556
[7] 1.6666667 2.7777778 3.8888889 5.0000000

19/39

Lab Part 1

Lab document:
http://jhudatascience.org//intro_to_r/Data_Classes/lab/Data_Classes_Lab.Rmd

20/39

http://jhudatascience.org//intro_to_r/Data_Classes/lab/Data_Classes_Lab.Rmd

Two-dimensional data classes

Two-dimensional data classes

Two-dimensional classes are those we would often use to store data read from a
file

a data frame (data.frame Or tibble class)
a matrix (matrix class)

- also composed of rows and columns

- unlike data.frame Or tibble, the entire matrix is composed of one R
class

- for example: all entries are numeric, or all entries are character

22/39

Matrices
head (iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
class(iris)

[1] "data.frame"

iris mat <-head(tibble (select (iris, -Species)))
as.matrix(iris mat)

#4 Sepal.Length Sepal.Width Petal.Length Petal.Width

[1,] 5.1 3.5 1.4 0.2

[2,] 4.9 3.0 1.4 0.2

[3,] 4.7 3.2 1.3 0.2

[4,] 4.6 3.1 1.5 0.2

[5,] 5.0 3.0 1.4 0.2

[0,] 5.4 3.9 1.7 0.4
matrix(l:4, ncol = 2)

*# [,1]1 [,2] 23/39

[1,] 1 3

Lists

-+ One other data type that is the most generic are "lists
+ Can be created using 1ist ()

- Can hold vectors, strings, matrices, models, list of other list!

mylist <- list (c("A",

mylist

[[1]]

[1] "A" "b" "C"

iia

i L[
i [1
ikia

[[3]]

iia [,1
i [1
[2,]

class (mylist)

[1] "list"

"c"), c(1,2,3), matrix(1l:4,

24/39

Lists

List elements can be named

mylist named <- list (letters
N numbers = c(1,2,3),
one matrix

mylist named

i
iia
iia
iia
i
iia
iia
iia
iia
iia

Sletters

[1] "A" "b" "C"
Snumbers

[1] 1 2 3

$one matrix

[,1]1 [,2]

[1,] 1

[2,] 2

C ("A" ,

matrix (1:4,

25/39

Dates
There are two most popular R classes used when working with dates and times:

Date class representing a calendar date

POSIXct class representing a calendar date with hours, minutes, seconds

We convert data from character to bate/pP0OsIxXct to use functions to manipulate
date/date and time

lubridate is a powerful, widely used R package from “tidyverse” family to work
with Date / POSIXct class objects

26/39

Creating Date class object

class ("2021-06-15")

[1] "character"
library (lubridate)

ymd ("2021-06-15")

[1] "2021-06-15"
class (ymd ("2021-06-15"))

[1] "Date"

lubridate package

lubridate package

Note for function ymd: yyear month day

27/39

Creating Date class object

mdy ("06/15/2021")
[1] "2021-06-15"
mdy ("06/15/21")

[1] "2021-06-15"

Note for function mdy: month day yyear

28/39

Lab Part 2

Lab document:
http://jhudatascience.org//intro_to_r/Data_Classes/lab/Data_Classes_Lab.Rmd

29/39

http://jhudatascience.org//intro_to_r/Data_Classes/lab/Data_Classes_Lab.Rmd

Extra Slides

Creating POSIXct class object

class ("2013-01-24 19:39:07")

[1] "character"

ymd hms ("2013-01-24 19:39:07") # lubridate package
[1] "2013-01-24 19:39:07 UTC"

class (ymd hms ("2013-01-24 19:39:07")) # lubridate package
[1] "POSIXct" "POSIXt"

UTC represents time zone, by default: Coordinated Universal Time

Note for function ymd hms: yyear month day hour minute second.

There are functions in case your data have only date, hour and minute
(ymd hm())or only date and hour (ymd h()).

31/39

Some useful functions from lubridate to manipulate bate objects

x <= ymd(c("2021-06-15", "2021-07-15"))
X

[1] "2021-06-15" "2021-07-15"

day (x) # see also: month (x) , year (x)
[1] 15 15

x + days (10)

[1] "2021-06-25" "2021-07-25"

x + months (1) + days(10)

[1] "2021-07-25" "2021-08-25"

wday (x, label = TRUE)

[1] Tue Thu

Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

32/39

Some useful functions from lubridate to manipulate POSIXct objects

x <- ymd hms("2013-01-24 19:39:07")
X

[1] "2013-01-24 19:39:07 UTC"
date (x)

[1] "2013-01-24"

X + hours (3)

[1] "2013-01-24 22:39:07 UTC"

floor date(x, "1 hour") # see also:

[1] "2013-01-24 19:00:00 UTC"

ceiling date ()

33/39

Differences in dates

x1l <= ymd(c("2021-06-15"))
X2 <- ymd(c("2021-07-15"))

difftime (x2, x1, units = "weeks")

Time difference of 4.285714 weeks
as.numeric(difftime(x2, x1, units = "weeks"))
[1] 4.285714

Similar can be done with time (e.g. difference in hours).

34/39

Data Selection

Matrices

[1] 1 2 3 456 789

Vectors: data selection

To get element(s) of a vector (one-dimensional object):

- Type the name of the variable and open the rectangular brackets []

In the rectangular brackets, type index (/vector of indexes) of element
(/elements) you want to pull. In R, indexes start from 1 (not: 0)

x <- C("a", "b", "CH, "d", nen, nfn, ngn, "h")
[1] LR LN AL L PCLLI AP LU L PER LI L ol ngn "H
[1] np

x[c(l, 2, 100)]

[1] g "R NA

37/39

Matrices: data selection

Note you cannot use dplyr functions (like select) on matrices. To subset matrix
rows and/or columns, use matrix[row index, column index].

mat

t# [,11 [,2]1 [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

mat([1l, 2] # individual entry: row 1, column 2

mat[l,] # first row

[1] 1 4 7

mat([, 1] # first column
[1]1 1 2 3

mat[c(1l,2), c(2,3)] # subset of original matrix: two rows and two co3BBfins

Lists: data selection

You can reference data from list using $ (if elements are named) or using [[1]

mylist named[[1]]
[l] "A" "b" "C"

mylist named[["letters"]] # works only for a 1list with elements' names

[l] "A" "b" "C"

mylist named$Sletters # works only for a list with elements' names

[l] "A" "b" "C"

39/39

