* Character: strings or individual characters, quoted * Numeric: any real number(s) * Integer: any integer(s)/whole numbers * Factor: categorical/qualitative variables * Logical: variables composed of TRUE or FALSE * Date/POSIXct: represents calendar dates and times
We have already covered character and numeric types.
class(c("tree", "cloud", "stars_&_sky"))
## [1] "character"
class(c(1, 4, 7))
## [1] "numeric"
This can also be a bit tricky.
class(c(1, 2, "tree"))
## [1] "character"
class(c("1", "4", "7"))
## [1] "character"
There are two major numeric subclasses
Integer is a special subset of numeric that contains only whole numbers
A sequence of numbers is an example of the integer type. You can use the seq() function to create a sequence of integers.
x = c(1, 2, 3, 4, 5) x
## [1] 1 2 3 4 5
x = seq(1:5) x
## [1] 1 2 3 4 5
class(x)
## [1] "integer"
typeof(x)
## [1] "integer"
Double is a special subset of numeric that contains fractional values.
Double stands for double-precision
y = c(1.1, 2.0, 3.2, 4.5, 5.6) y
## [1] 1.1 2.0 3.2 4.5 5.6
class(y)
## [1] "numeric"
typeof(y)
## [1] "double"
A tibble will show the difference (as does glimpse())
tibble(xvar = x, yvar = y)
## # A tibble: 5 × 2 ## xvar yvar ## <int> <dbl> ## 1 1 1.1 ## 2 2 2 ## 3 3 3.2 ## 4 4 4.5 ## 5 5 5.6
logical is a type that only has two possible elements: TRUE and FALSE
x = c(TRUE, FALSE, TRUE, TRUE, FALSE) class(x)
## [1] "logical"
Note that logical elements are NOT in quotes.
z = c("TRUE", "FALSE", "TRUE", "FALSE")
class(z)
## [1] "character"
There are two useful functions associated with practically all R classes:
is.CLASS_NAME(x) to logically check whether or not x is of certain classas.CLASS_NAME(x) to coerce between classes x from current x class into a certain classis.character(c(1, 4, 7))
## [1] FALSE
is.numeric(c(1, 4, 7))
## [1] TRUE
is.character(c("tree", "cloud"))
## [1] TRUE
is.numeric(c("tree", "cloud"))
## [1] FALSE
In some cases the coercing is seamless
as.character(c(1, 4, 7))
## [1] "1" "4" "7"
as.numeric(c("1", "4", "7"))
## [1] 1 4 7
as.logical(c("TRUE", "FALSE", "FALSE"))
## [1] TRUE FALSE FALSE
as.integer(c(1.2, 3.7))
## [1] 1 3
as.double(c(1, 2, 3))
## [1] 1 2 3
In some cases the coercing is not possible; if executed, will return NA (an R constant representing “Not Available” i.e. missing value)
as.numeric(c("1", "4", "7a"))
## Warning: NAs introduced by coercion
## [1] 1 4 NA
as.logical(c("TRUE", "FALSE", "UNKNOWN"))
## [1] TRUE FALSE NA
as.Date(c("2021-06-15", "2021-06-32"))
## [1] "2021-06-15" NA
A factor is a special character vector where the elements have pre-defined groups or ‘levels’. You can think of these as qualitative or categorical variables. Use the factor() function to create factors.
x <- c("small", "mediam", "large", "medium", "large")
class(x)
## [1] "character"
x_fact = factor(x) # factor() is a function class(x_fact)
## [1] "factor"
x_fact
## [1] small mediam large medium large ## Levels: large mediam medium small
Note that levels are, by default, in alphanumerical order!
You can learn what are the unique levels of a factor vector
levels(x_fact)
## [1] "large" "mediam" "medium" "small"
More on how to change the levels ordering in a lecture coming up!
Factors can be converted to numeric or character very easily
x_fact
## [1] small mediam large medium large ## Levels: large mediam medium small
as.character(x_fact)
## [1] "small" "mediam" "large" "medium" "large"
as.numeric(x_fact)
## [1] 4 2 1 3 1
For character: rep() can create very long vectors.
The each argument specifies how many of each item you want repeated. The times argument specifies how many times you want the vector repeated.
rep(c("black", "white"), each = 3)
## [1] "black" "black" "black" "white" "white" "white"
rep(c("black", "white"), times = 3)
## [1] "black" "white" "black" "white" "black" "white"
rep(c("black", "white"), each = 2, times = 2)
## [1] "black" "black" "white" "white" "black" "black" "white" "white"
For numeric: seq() can be very useful. The from argument says what number to start on. The to argument says what number to not go above. The by argument says how much to increment by. The length.out argument says how long the vector should be overall.
seq(from = 0, to = 1, by = 0.2)
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
seq(from = -5, to = 5, length.out = 10)
## [1] -5.0000000 -3.8888889 -2.7777778 -1.6666667 -0.5555556 0.5555556 ## [7] 1.6666667 2.7777778 3.8888889 5.0000000
Lab document: http://jhudatascience.org//intro_to_r/Data_Classes/lab/Data_Classes_Lab.Rmd
Two-dimensional classes are those we would often use to store data read from a file
a data frame (data.frame or tibble class)
a matrix (matrix class)
data.frame or tibble, the entire matrix is composed of one R classnumeric, or all entries are characterhead(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## 1 5.1 3.5 1.4 0.2 setosa ## 2 4.9 3.0 1.4 0.2 setosa ## 3 4.7 3.2 1.3 0.2 setosa ## 4 4.6 3.1 1.5 0.2 setosa ## 5 5.0 3.6 1.4 0.2 setosa ## 6 5.4 3.9 1.7 0.4 setosa
class(iris)
## [1] "data.frame"
iris_mat <-head(tibble(select(iris, -Species))) as.matrix(iris_mat)
## Sepal.Length Sepal.Width Petal.Length Petal.Width ## [1,] 5.1 3.5 1.4 0.2 ## [2,] 4.9 3.0 1.4 0.2 ## [3,] 4.7 3.2 1.3 0.2 ## [4,] 4.6 3.1 1.5 0.2 ## [5,] 5.0 3.6 1.4 0.2 ## [6,] 5.4 3.9 1.7 0.4
matrix(1:4, ncol = 2)
## [,1] [,2] ## [1,] 1 3 ## [2,] 2 4
list()mylist <- list(c("A", "b", "c"), c(1,2,3), matrix(1:4, ncol = 2))
mylist
## [[1]] ## [1] "A" "b" "c" ## ## [[2]] ## [1] 1 2 3 ## ## [[3]] ## [,1] [,2] ## [1,] 1 3 ## [2,] 2 4
class(mylist)
## [1] "list"
List elements can be named
mylist_named <- list(letters = c("A", "b", "c"),
numbers = c(1,2,3),
one_matrix = matrix(1:4, ncol = 2))
mylist_named
## $letters ## [1] "A" "b" "c" ## ## $numbers ## [1] 1 2 3 ## ## $one_matrix ## [,1] [,2] ## [1,] 1 3 ## [2,] 2 4
There are two most popular R classes used when working with dates and times:
Date class representing a calendar datePOSIXct class representing a calendar date with hours, minutes, secondsWe convert data from character to Date/POSIXct to use functions to manipulate date/date and time
lubridate is a powerful, widely used R package from “tidyverse” family to work with Date / POSIXct class objects
Date class objectclass("2021-06-15")
## [1] "character"
library(lubridate)
ymd("2021-06-15") # lubridate package
## [1] "2021-06-15"
class(ymd("2021-06-15")) # lubridate package
## [1] "Date"
Note for function ymd: yyear month day
Date class objectmdy("06/15/2021")
## [1] "2021-06-15"
mdy("06/15/21")
## [1] "2021-06-15"
Note for function mdy: month day yyear
Lab document: http://jhudatascience.org//intro_to_r/Data_Classes/lab/Data_Classes_Lab.Rmd
POSIXct class objectclass("2013-01-24 19:39:07")
## [1] "character"
ymd_hms("2013-01-24 19:39:07") # lubridate package
## [1] "2013-01-24 19:39:07 UTC"
class(ymd_hms("2013-01-24 19:39:07")) # lubridate package
## [1] "POSIXct" "POSIXt"
UTC represents time zone, by default: Coordinated Universal Time
Note for function ymd_hms: yyear month day hour minute second.
There are functions in case your data have only date, hour and minute (ymd_hm()) or only date and hour (ymd_h()).
lubridate to manipulate Date objectsx <- ymd(c("2021-06-15", "2021-07-15"))
x
## [1] "2021-06-15" "2021-07-15"
day(x) # see also: month(x) , year(x)
## [1] 15 15
x + days(10)
## [1] "2021-06-25" "2021-07-25"
x + months(1) + days(10)
## [1] "2021-07-25" "2021-08-25"
wday(x, label = TRUE)
## [1] Tue Thu ## Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat
lubridate to manipulate POSIXct objectsx <- ymd_hms("2013-01-24 19:39:07")
x
## [1] "2013-01-24 19:39:07 UTC"
date(x)
## [1] "2013-01-24"
x + hours(3)
## [1] "2013-01-24 22:39:07 UTC"
floor_date(x, "1 hour") # see also: ceiling_date()
## [1] "2013-01-24 19:00:00 UTC"
x1 <- ymd(c("2021-06-15"))
x2 <- ymd(c("2021-07-15"))
difftime(x2, x1, units = "weeks")
## Time difference of 4.285714 weeks
as.numeric(difftime(x2, x1, units = "weeks"))
## [1] 4.285714
Similar can be done with time (e.g. difference in hours).
n = 1:9 n
## [1] 1 2 3 4 5 6 7 8 9
mat = matrix(n, nrow = 3) mat
## [,1] [,2] [,3] ## [1,] 1 4 7 ## [2,] 2 5 8 ## [3,] 3 6 9
To get element(s) of a vector (one-dimensional object):
[ ]x <- c("a", "b", "c", "d", "e", "f", "g", "h")
x
## [1] "a" "b" "c" "d" "e" "f" "g" "h"
x[2]
## [1] "b"
x[c(1, 2, 100)]
## [1] "a" "b" NA
Note you cannot use dplyr functions (like select) on matrices. To subset matrix rows and/or columns, use matrix[row_index, column_index].
mat
## [,1] [,2] [,3] ## [1,] 1 4 7 ## [2,] 2 5 8 ## [3,] 3 6 9
mat[1, 1] # individual entry: row 1, column 1
## [1] 1
mat[1, 2] # individual entry: row 1, column 2
## [1] 4
mat[1, ] # first row
## [1] 1 4 7
mat[, 1] # first column
## [1] 1 2 3
mat[c(1,2), c(2,3)] # subset of original matrix: two rows and two columns
## [,1] [,2] ## [1,] 4 7 ## [2,] 5 8
You can reference data from list using $ (if elements are named) or using [[ ]]
mylist_named[[1]]
## [1] "A" "b" "c"
mylist_named[["letters"]] # works only for a list with elements' names
## [1] "A" "b" "c"
mylist_named$letters # works only for a list with elements' names
## [1] "A" "b" "c"